
2475-1502 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TG.2020.3032796, IEEE
Transactions on Games

EVOLUTIONARY COMPUTATION FOR GAME-PLAYING 1

Abstract—The video-game industry has recently grown from

focused markets to mainstream. The advancements the industry

has been enjoying motivated researches to propose techniques and

tools to support the activities across the different phases of the

game development lifecycle. Game testing is one of the crucial

activities within the game development process. Due to the nature

of game testing, many automated game testing techniques have

been proposed in the literature. However, there is no framework

that could be used to aid practitioners in selecting appropriate

techniques suitable for their particular development efforts. In

this paper we present an attribute-based framework to classify

and compare these techniques and provide such aid to

practitioners. The framework is also meant to guide researchers

interested in proposing new game testing techniques. The paper

discusses a number of prominent techniques against the

framework. Analysis of the discussion reveals gaps and suggests

open points for future research.

Index Terms — Software Testing, Game Development,

Playtesting, Game Testing, Assessment Framework

I. INTRODUCTION

A video game is a highly sophisticated software system with

several unique aspects like nondeterministic behaviors, visual

presentations, and creative design [1, 2]. Indeed, games are

known to be one of the most complex software systems, where

several subsystems come along together to make a game

correctly functioning, attractive and entertaining [1] [3]. The

video game industry has evolved significantly through the

years [4].

As video game industry matures, tremendous fanbase and

consumers have grown to look to play games with great quality

and user experience. According to a study by gamesindustry.biz

[5], the total value of the revenue raised in the global game

market of games published on PC, Console, Mobile and Web

platforms in 2018 was about 134.9 billion dollars. Therefore,

quality assurance and verification processes are of high

importance in the game development industry [6] [7]. Verifying

the quality of a game can be done through applying several

activities, one of these activities is playtesting, which is the

process of playing through a game and reviewing it [6].

Software testing and fault detection play key role in software

development in general [8]. The process of testing software

consists of validating and verifying software products to meet

the requirements and design, and to ensure that the software

* Corresponding author.
Information and Computer Science Department King Fahd University of

Petroleum and Minerals, Saudi Arabia.

works as expected [9].

With the increasing demands for more sophisticated software

development, testing became not only crucial but also more

difficult [10] [11]. Testing in the software industry, in general,

has been a laborious and time-consuming work. Consequently,

automated testing became widely adopted to reduce cost and

improve quality [12].

The current state of games testing in the industry is to hire

human testers to manually play game builds at various stages of

the development process [13][14]. However, the complexity of

video games necessities test automation. It is noteworthy too

that, in comparison with traditional software development,

video game quality assurance takes into consideration other

dimensions other than correctness and performance, such as

testing the fun factor, game balance, physics, level design,

multiplayer networking, etc. [15] [16]. Hence, employing

automated agents can improve and optimize the playtesting

process [17], thus reducing the testing costs. These agents are

known to be faster than human testers, where they can explore

the game space in much shorter time [18]. Automated

playtesting agents are also capable of playing the game

repeating the tests multiple times to help game designers and

developers during the development process.

Many techniques have been proposed in the literature to

automate game testing; some of such techniques have also been

applied and used in the game development industry [19]. For

example, companies like KING and UBISOFT used AI based

agents to test, balance and enhance newly added levels [20]

[21]. Similarly, Electronic Arts (EA) used Machine Learning

and A* algorithms to find flaws in their games [22] [23].

However, to the best of our knowledge, there is no framework

that could be used to aid practitioners in selecting appropriate

techniques suitable for their particular development efforts. In

this paper we present a framework to facilitate classifying and

comparing techniques based on a set of attributes identified as

a result of an extensive survey of existing techniques. We also

critically assessed and compared the game testing techniques

available in the literature based on the framework. The

assessment also revealed eye-opening gaps for future research

in the area of automated game testing.

The rest of this paper is outlined as follows. In Section II

related work is discussed. Research methodology and research

questions are presented in Section III. Section IV presents the

A. Albaghajati email: g201703510@kfupm.edu.sa
M. Ahmed email: moataz@kfupm.edu.sa

Video Game Automated Testing Approaches:

An Assessment Framework

Aghyad Albaghajati, Moataz Ahmed*

Authorized licensed use limited to: University of London: Online Library. Downloaded on July 06,2022 at 14:12:15 UTC from IEEE Xplore. Restrictions apply.

mailto:g201703510@kfupm.edu.sa
mailto:moataz@kfupm.edu.sa

2475-1502 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TG.2020.3032796, IEEE
Transactions on Games

EVOLUTIONARY COMPUTATION FOR GAME-PLAYING 2

analysis, results and answers for our study's research questions.

Section V discusses the implications of this study and suggests

future work in the area. Section VI presents the threats to

validity of this study. Finally, Section VII concludes our work.

II. RELATED STUDIES

We were able to find only very few studies that address

analyzing game testing techniques. Redavid and Adil (2011)

[11] presented an overview of game code testing techniques.

The study [11] focused on the game development process, its

artifacts and their testing such as combinatorial testing to test

game software, testing flow diagrams to test game behavior

from player's perspective, clean room testing, and more

software engineering related approaches. However, the study

was not targeting automated game testing, where such

automated techniques were not fully mature; instead, the study

focused on game development life cycle and game testing

processes from the perspective of software engineering

practices, where most of the discussed processes were manual

approaches.

In another study, Roohi et al. (2018) [24] provided a

systematic literature review of the intrinsic motivations such as

autonomy, curiosity, competence, or domination and their

implementation in AI game-playing agents. The authors

analyzed several motivations and found that the most targeted

one in the literature is curiosity. Moreover, the authors pointed

out at the importance of utilizing players’ collected data in

multiplayer games to allow mixing between different

motivations, and to validate, support and improve human-

likeness in simulated agents. Nevertheless, the study did not go

through automated game testing approaches in the literature.

Furthermore, the study focused mainly on player modeling and

took a glance at simulation-based testing. Moreover, the study

used Google scholar only to find related studies, although other

search engines could give more related studies.

Zarembo (2019) [25] presented a short overview of few

automated playtesting techniques. The study discussed and

categorized the selected studies. However, the author

mentioned that his study is not comprehensive, and more

analysis and studies are required. Moreover, this study did not

discuss the testing objectives of the reviewed approaches.

Thus, to the best of our knowledge, our study is the first

detailed study that compares and discusses the available

automated game testing techniques in the literature.

III. RESEARCH METHODOLOGY

In this section we describe the research methodology carried

out in this study. Our review research methodology was

inspired and conducted by following Kitchenham’s guidelines

for conducting literature reviews [26]. Hence, in this section we

present the steps that we followed in our research from defining

the study goal to describing the data extraction process.

A. Study Goal and Research Questions

With the increasing interest in video games and with its

growing fanbases, game development companies have been

interested in applying automated game testing, where game

designers and developers can focus on more creative processes

that could advance the game experience rather than testing the

game manually, which could take a lot of time and effort [27].

Thus, having an agent that can test a game automatically would

increase the game's quality in a faster manner.

The main goal of this study is to investigate and

compare the found automated game testing approaches, their

applications and their objectives, where we conduct a critical

assessment and analysis study using an established attribute-

based framework to find answers to our research questions.

Moreover, this study points out to open problems in the

literature for the future and to further extend the work in this

area.

Conducting this study would help us find answers to the

following research questions:

• RQ1-What automated game testing approaches are

applied in the literature?

o In answering this research question, we would be

able to identify the found automated game testing

approaches in the literature, their benefits, and their

limitations.

• RQ2-What are the objectives of the automated game

testing approaches available in the literature?

o Answering this research question would investigate

the goals of the studied automated game testing

approaches, and their support for game verification,

balancing, level design, and more.

• RQ3-How do researchers validate their developed

automated game testing approaches?

o Answering this research question would specify game

genres used to apply the automated game testing

approaches, and whether the approaches are generally

applicable or open-source.

• RQ4: What are the shortcomings in the current state of the

affairs?

o This research question is answered by studying and

analyzing the studies found and suggesting future

work.

B. Search Strategy

To support our study and to find answers to our research

questions, we investigated several sources of information.

Hence, we collected relevant studies from scientific literature

sources only. To collect relevant studies, we focused our search

in the following literature search engines and databases: Google

Scholar, ACM, Science Direct, IEEE and Springer. Moreover,

to be able to cover and collect more sources of interest we used

both backward and forward snowballing techniques to collect

related studies that were not found while searching in the search

engines.

Furthermore, we used the following search strings to collect

the relevant studies:

• In Google Scholar, IEEE, ACM, and Springer:

("automated" OR "auto*") AND ("game" OR "video

game") AND ("verify" OR "verification" OR "testing"

OR "game testing" OR "test*" OR "playtest*" OR

"playtesting")

Authorized licensed use limited to: University of London: Online Library. Downloaded on July 06,2022 at 14:12:15 UTC from IEEE Xplore. Restrictions apply.

2475-1502 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TG.2020.3032796, IEEE
Transactions on Games

EVOLUTIONARY COMPUTATION FOR GAME-PLAYING 3

• In Science Direct: (due to the limitations of the searching

tool in Science Direct database, we modified the search

string to be the following):

("auto") AND ("video game") AND ("verify" OR

"verification" OR "testing" OR "game testing" OR

"test" OR "playtest" OR "playtesting")

C. Study Selection and Quality Assessment

The study selection went through several steps as follows:

1) Initial selection: The searching process was done on each

one of the mentioned databases in Section III-B. The first

selection of the studies was based on the article of each

study.

2) Filtering studies: To find the most relevant studies from

the initially collected ones, we applied our quality

assessment criteria. Moreover, we went through the

collected studies and filtered them based on the contents of

their abstract, introduction and conclusion.

3) Merging: After filtering the studies, we ended up with a

pool of selected studies that are relevant to our research.

However, some of them were duplicates due to the

outcomes of databases and search engines. Thus, we

merged and combined all the found studies under one set

of studies with unique and no study duplications.

4) Snowballing: To collect more related studies and to make

sure that we covered all studies available, we ran

backward and forward snowballing processes. Backward

snowballing is the process of going through the references

list of a study and identifying new papers to include from

it [28]. On the other hand, forward snowballing refers to

identifying and collecting new related papers based on the

papers that are citing the examined paper [28]. The

snowballing processes resulted into adding new papers that

were not found during the first selection steps.

5) Final Decision: After adding the new studies that were

collected from the snowballing processes. We filtered our

set of studies again to end up with the final set of studies of

interest.

The selection process was supported by quality assessment

criteria with inclusion and exclusion rules as follows:

1) Inclusion Criteria:

a) Studies written in English

b) Studies discussing automated video game verification,

testing, or playtesting

2) Exclusion Criteria:

a) Studies talking about topics not related to game

testing, such as procedural level generation agents

b) Studies that are duplicates of other studies

D. Data Extraction

In order to have solid extracted data and to easily manage the

extraction process, we established a well-structured comparison

framework to help in finding answers to the research questions.

Hence, for each research question there are certain attributes

that the comparison framework studies. These attributes are

categorized based on the research questions, and they are

defined as follows:

• RQ1:

o Approach: This attribute focuses on the methods and

approaches used in the proposed solutions in the

related studies. An example of such approaches could

be based on Deep learning, Reinforcement Learning,

Genetic Algorithms, and several other approaches that

are used in the literature.

o Benefits: This attribute focuses on the benefits and the

outcomes of each approach studied in the literature.

o Limitations: This attribute presents the limitations

and drawbacks (if found) of the studied approach.

• RQ2:

o Testing Goals: This attribute presents the goals of

running automated tests on games, where there might

be different goals for testing, such as, verifying the

game’s functionalities, balancing the game, enhancing

the level design, etc.

• RQ3:

o Targeted Games: This attribute studies the games

that literature studies used and applied their

approaches on. There are different types of games

under variety of categories of genres [29].

o General Applicability: This attribute studies the

applicability of the approaches to other games or

software systems other than the ones they have been

evaluated with.

o Open Source: This attribute focuses on the

availability of the developed approach’s code publicly

as open-source project.

 The analysis of the extracted information from the

studies were discussed and visually illustrated in Section IV

based on the research questions and their related comparison

attributes .

IV. RESULTS AND DISCUSSION

In this section we present our findings and primary

observations after studying and analyzing the found studies, and

by answering the research questions.

A. RQ1 - What automated game testing approaches are

applied in the literature?

Studies in the literature varied in the ways of implementing

automated game testing approaches. To distinguish between the

studied approaches, we categorized the studies based on the

implemented algorithms and their common characteristics.

These categories are search-based, goal-directed, human-like,

scenario-based, and model-based. We will go into the details of

the approaches in each category, in addition to discussing the

benefits and limitations of each one of them.

1) Search-Based Approaches

Search-based approaches are those focusing on exploring

and analyzing the state space of a game, with the goal of finding

and reporting the availability of states that match or break

predefined criteria. Several algorithms were used in the

literature to apply search-based testing, where some

studies utilized Evolutionary Algorithms such as Genetic

Authorized licensed use limited to: University of London: Online Library. Downloaded on July 06,2022 at 14:12:15 UTC from IEEE Xplore. Restrictions apply.

2475-1502 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TG.2020.3032796, IEEE
Transactions on Games

EVOLUTIONARY COMPUTATION FOR GAME-PLAYING 4

Algorithms [16, 30, 31, 32], while other studies used graph

based algorithms such as Monte Carlo Search [33, 34], and A*

[22, 35]. On the other hand, some studies employed Rapidly

Exploring Random Tree Search [36, 37, 38].

• Evolutionary algorithms: [16, 30, 31, 32, 39]

 Chan et al. (2004) [16] presented a Genetic

Algorithms based approach to verify, find, and reach

game states that designers did not expect to be existing

while designing the game. In another study [30], Salge et

al. (2008) developed a Genetic Algorithms agent that

helped in verifying the game with its ability of detecting

bugs and gameplay flaws. Furthermore, Tan et al. (2013)

[32] used Genetic Algorithms with Artificial Neural

Networks to understand the state space and to test the

game levels. In another study, Garcia Sanchez et al.

(2018) [31] approached automated playtesting using AI

agent based on Evolutionary Algorithms and a new

mutation operator. The developed approach assisted game

designers to balance the game undertest. Zheng et al.

(2019) [39] developed a testing agent called Wuji which

uses Evolutionary Algorithms and multi-objective

optimization to explore game space.

 Despite the effectiveness of using Evolutionary

Algorithms to search and explore game state spaces, the

approach had some limitations, where it might be time

consuming when it comes to identifying the best fitness

function for the agent [16]. Moreover, Chan et al. [16]

stated that using Evolutionary Algorithms depends on off-

line learning which could sometimes fail to cover all the

sequences of the game. Thus, to overcome these

problems, Salge et al. [30] used three AI paradigms which

are Swarm AI, Councillor AI and Reactive AI to make the

approach more useful and be able to reach more states.

The authors of [39] utilized Reinforcement Learning to

direct the agent while exploring the state space. Moreover,

in [32], Tan et al. used Artificial Neural Networks to learn

from the explored states.

• Graph search: [33, 34, 22, 35, 40, 41, 42]

 Shaker et al. (2013) [41] presented an approach that

is based on Depth-First state space search using game

simulations. The authors stated that they preferred using

Depth-First search because they were interested in

checking the playability of the levels instead of

investigating all the solution space, where playability is a

quality attribute [43] based on usability in the context of

video games, gameplay or player interaction [44][45],

with an objective of providing enjoyment and

entertainment through credibility and satisfaction [46]. To

enable sensible search procedure, the authors restricted

the search by encoding core game rules’ components into

a Prolog-based agent, using a set of reachable components

to cover context information, and by defining a policy to

get possible actions. One of the limitations mentioned by

the authors is that the agent might accept generated levels

that are unplayable, or sometimes accept generated

playable levels that could contain some unnecessary or

unused components.

 In other studies, A* search algorithm was used to test

games. Silva et al. (2018) [22] used A* based approach to

find misbehaving events. Hoyt et al. (2019) [35] proposed

two A* based approaches that can be used to assess the

playability of game levels. The first is an A* Reachability

Check agent, which determines the possibility of going

from any two random points in a level [35]. The second is

an A* based Survival Analysis agent, which gives an

approximation about navigation difficulty in levels [35].

Although the A* approaches seem to be effective for

searching through a state space, Silva et al. [22] stated that

developing such approach comes with a price which is the

need of tuning the heuristic function to fit the situation

being tested.

 On the other hand, Monte Carlo search algorithms

were used by several studies. Keehl and Smith (2018) [33]

presented game testing automation in Unity engine using

a framework that is based on Monte Carlo Tree Search

(MCTS). The framework consisted of four main parts:

First, Jupyter notebook is used for running the

experiments and visualizing the results. Second, a module

that contains implementation of MCTS which is called

python support. Third, a C# based module that is

mandatory to any game project that uses this framework,

which communicates with the python modules through a

TCP protocol socket. Fourth, modifications to the game

where it must determine legal moves at each step, request

an index of a move to take, and apply actions. In another

study [34], Zook et al. (2015) presented the utilization of

MCTS to perform planning strategies to simulate player

behavior with different skills, where MCTS helped in

understanding the space of strategic options of player

skills. Isaksen et al. (2015) [40] presented the use of

survival analysis and Monte Carlo Simulation to develop

an AI agent that allows the exploration of a subset of game

variants with parameters changes. MCTS based agents

bring several benefits. Isaksen et al. [40] showed that

using Monte Carlo can help in enhancing the gameplay

quality and the game’s playability by modifying

game’s parameters such as number of obstacles, sizes

and dimensions of game objects and scoring criteria.

Moreover, Zook et al. [34] stated that the analysis of

MCTS based agents could help in understanding and

balancing gameplay and levels. Despite the various

implementations and use cases of Monte Carlo based

approaches, they still have some limitations as pointed out

by several authors [33, 34, 40]. One of these limitations is

that a Monte Carlo based agent can only look in single

dimension of parameters. In addition to that, another

limitation is related to the limited representation of the

game state space [33] [34]. To avoid such limitations,

Keehl and Smith [33] suggested using reinforcement

learning algorithms to extract knowledge gained during

MCTS rollouts. Moreover, Isaksen et al. [40]

recommended looking into higher dimensions of

parameters when using Monte Carlo based approaches to

get better exploration results.

Authorized licensed use limited to: University of London: Online Library. Downloaded on July 06,2022 at 14:12:15 UTC from IEEE Xplore. Restrictions apply.

2475-1502 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TG.2020.3032796, IEEE
Transactions on Games

EVOLUTIONARY COMPUTATION FOR GAME-PLAYING 5

 In another side, Machado et al. (2018) [42] presented

Cicero, an AI-assisted game design and debugging tool.

The AI agents in this tool can playtest different types of

games which are built on top of GVGAI. The agents of

the tool use graph search algorithms such as, breadth-first,

depth-first search, A* and, MCTS. Moreover, they can

explore the state space of the games they play using

predefined heuristics to find the best actions to take.

However, the limitation of this tool is its subjectivity to

GVGAI, where the authors stated that the tool is nowhere

near having general-purpose game-playing agents that

can work in other game engines or development

environments. Furthermore, they mentioned that the tool

still has open questions related to the lack of fast

simulations.

• Rapidly exploring random tree search: [36, 37, 38]

 Zhan et al. (2018) [36] proposed a search approach

based on Rapidly Exploring Random Tree (RRT), which

works by growing a tree and capturing the reachability of

points in the game’s state space from some initial state in

the game, where the algorithm takes advantage of its

ability of exploring continuous feature space. Moreover,

the approach has the ability of understanding the relations

between explored states. To allow progression during the

exploration process, random goals are picked, and the

algorithm tries to reach them by finding closest nodes to

the goal and by picking and performing the best actions.

 In another study, Chang et al. (2019) [37] presented

an approach based on RRT called Reveal-More. The

approach combines automatic exploration with few

minutes of human gameplay, which results in a better

game state coverage. The authors [37] stated that using

this approach would lower the testers’ efforts in testing

and finding all paths within a game.

 Tremblay et al. (2014) [38] proposed a game testing

approach that abstracts game state space into a high

dimensional geometric space to support pathfinding. This

approach used RRT to support design decisions by

integrating it with Unity engine.

 From the studied approaches, we can see that RRT

has a great potential in exploring continuous state spaces.

However, Chang et al. [37] stated that RRT has a

limitation of not picking the most useful actions. Thus,

more studies that investigate the usefulness of the selected

actions is required.

2) Goal-Directed Approaches

Goal-directed approaches aim at injecting the goals of an

agent to its implementation through defining policies, rewards,

and penalties, which guide the agent to explore the potential

paths that lead to the desired goals and objectives. The found

approaches varied in their implementation. Some studies used

Reinforcement Learning [47, 48, 49, 50], while others used

different algorithms with a defined policy that forces the search

to be directed to a certain goal [51, 52, 53].

• Reinforcement learning: [47, 48, 49, 50]

Pfau et al. (2017) [47] developed a system for

intelligent completion of adventure riddles via

Unsupervised Solving (ICARUS) which is based on

discrete Reinforcement Learning in a dualistic fashion,

with short-term and long-term memory, and built for

Visionaire game engine. Moreover, the approach utilizes

specialized heuristics that reduce the search space, in

addition to the ability of using pre-defined situation-

dependent action choices to support the agent’s

playthroughs. ICARUS is used to autonomously play,

test, and report bugs in games.

Napolitano (2020) [48] proposed using Deep

Reinforcement Learning with a Dueling Deep Q-Network

strategy, to gain efficient and performant results that

allowed the agent to extract essential information from the

game environment and take decisions on the next moves

to support game balancing and design.

Joakim et al. (2020) [49] used Deep Reinforcement

Learning, to create a self-learning agent that can explore

and exploit the game mechanics based on a user-defined

reinforcing reward signal. The authors stated that using

Reinforcement Learning agents is better suited to

complement the testing environment.

Shin et al. (2020) [50] presented applying

Reinforcement Learning via strategic play learning.

Moreover, the employed policy-based learning method

that was used in the study is called actor-centric, which

provides probabilistically strategic actions befitting

randomly changing states via learning policies suitable to

the state. This approach can be used to verify game design

and level balancing.

There were some limitations when applying

reinforcement learning. Joakim et al. [49] mentioned that

not all problems are better solved using Reinforcement

Learning, where using more focused agents is better.

Moreover, Pfau et al. [47] stated that according to their

approach of implementing Reinforcement Learning, one

of the limitations is the subjectivity towards a certain

genre of games and a specific development environment.

Shin et al. [50] mentioned that training such agents might

be time consuming, and to overcome this limitation

predefined strategic play is recommended.

• Restricted heuristics: [51, 52, 53]

De Mesentier Silva et al. (2017) [51] presented two

agents with specialized heuristics, where the first agent

approaches the game in a conservative manor, whereas

the second plays aggressively and proactively. The

authors have shown that their approaches were cheaper in

terms of computational time and they outperformed A*

and MCTS agents. In [52] (which is a continuation work

of [50]) the authors developed other agents that were able

to discover and identify faulty states in the game.

Moreover, the authors stated that the new agents would

help in saving cost and time in the early stages of

development. The agents presented [51, 52] can be used

for game analysis as stated by the authors.

Jaffe et al. (2012) [53] developed a restricted-play

framework, which is capable of measuring the game

balance. Though, one of the limitations mentioned by the

Authorized licensed use limited to: University of London: Online Library. Downloaded on July 06,2022 at 14:12:15 UTC from IEEE Xplore. Restrictions apply.

2475-1502 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TG.2020.3032796, IEEE
Transactions on Games

EVOLUTIONARY COMPUTATION FOR GAME-PLAYING 6

authors [53] is that such approaches can only be utilized

to test discrete games. In addition, agents based on

restricted heuristics are subjective to the game being

tested [51, 52].

3) Human-Like Approaches

Human-like approaches are focused on imitating the human

behavior, where agents are optimized to produce results similar

to those obtained from humans. Such approaches are very

useful when testing human centric features, such as emotions,

curiosity, challenges, difficulty, aggressiveness and more.

There were several studies found that implemented human-like

agents, either through utilizing human data and learning

algorithms, or by using specialized and restricted heuristics, or

mixing between different algorithms.

• Machine learning: [23, 54, 55, 20, 56, 57]

A semi-automated gameplay analysis by Machine

Learning using active learning approach was presented by

Southey et al. (2005) [23, 54]. The approach uses player

data to train the agent, and it was used to find flaws in the

gameplay.

Zook et al. (2014) [55] used an Active Learning

approach with regression model that utilizes four

acquisition functions for regression models which are

variance, probability of improvement, expected

improvement, and upper-confidence bounds. It was used

to fix game controls.

Gudmundsson et al. (2018) [20] used Deep Learning

approach based on Convolutional Neural Networks to

analyze game screens and to make decisions based on

that. The authors stated in the study that in order to train

human-like agents, training data was required. Thus, they

collected those data from 1% of randomly selected players

from the game in a duration of 2 weeks. The obtained

dataset was nearly 1.2 * 107 samples. Then the dataset was

split into 3 subsets used per level: training set with 4500

samples, validation set with 500 samples and test set with

500 samples. Their agent was used to check the

playability of newly added levels. The approach was able

to play and assess the design of the game, and it was

giving better results than an MCTS-based agent.

Borovikov et al. (2019) [56] presented two case

studies of game playtesting using Machine Learning

algorithms. In the first case study, the authors developed

an agent that is composed of three main components

which are, an Ensemble of Multi-resolution Markov

models that capture the style of the teacher from the main

game features perspective, a Deep Neural Networks

component which was trained as a supervised model on

samples bootstrapped from an agent playing the game

following the Markov ensemble, and an interactivity

component between the game designer and the agent

where the game designer can take the controller from the

agent allowing the agent to learn from the samples

generated while the game designer is taking control. In the

second case study, they utilized Reinforcement Learning

to allow the agent to play in different styles like offensive

or defensive. This approach can help in reducing the effort

of developing such agents that act as game AI.

Pfau et al. (2020) [57] applied an approach based on

Deep Player Behavior Modeling (DPBM), that can be

used to automate game balancing. Decisions and player

models are created by DPBM through mapping

preference distribution of actions to game states via

machine learning and state-action architecture. The

approach allows considering many playing styles, instead

of reducing the decision-making strategies.

Despite the various applications of Machine Learning

in human-like agents, some limitations were mentioned in

the literature. The availability of player data is the main

and most common limitation, where the amount of player

data could affect the performance of the agent [54, 55, 56,

57]. Though, Borovikov et al. [56] stated that interactive

sessions could solve such limitation. On the other hand,

the space complexity of the game could affect the

performance and the accuracy of the agent [54, 55], which

can be mitigated by specifying and training agents based

on data that is relevant to a specific situation [55].

• Restricted heuristics: [58, 59, 60, 61, 62]

Devlin et al. (2016) [58] used MCTS based agent that

imitates human behavior by using a biased policy that

uses Bradley-Terry value and UCT scoring formula, in

addition to the utilization of human data. The authors

stated that the performance of the agent was competitive

and efficient for discrete action games. The approach can

be used to analyze and study game balancing.

Ariyurek et al. (2019) [59] proposed a human-like

based tester and a synthetic based agent which uses

MCTS. The human-like agent uses human-like test goals

that were extracted and trained from human tester data.

On the other hand, the synthetic based agents were based

on synthetic test goals that were created from game

scenarios and represented using a graph-based approach

where the agent rewarded all valid and some invalid

transitions. The authors applied these test goals on agents

based on state-action-reward-state-action and MCTS, and

generated test sequences and validated the game behavior

according to the game constraints automatically. The

agent’s decision making procedure was based on user

parameters that were supplied to the agent. The agent

proposed in this study plays the goals sequentially through

their feature vector. The sequence can then be checked for

evaluation using a criteria threshold. Furthermore, inverse

reinforcement learning was used in the study to capture

and learn experiences and to automatically generate tests

using human testers’ expertise. Moreover, the authors

proposed a multiple greedy-policy inverse reinforcement

learning to overcome the problem of complex human

tester actions that are difficult to model. The study stated

that it was easier to build an agent that targets a simple

goal to play rather than a complex one. Moreover, it was

better to verify one goal at a time when playing different

levels, where skipping a feature might happen because of

the level composition and execution order of the test steps

that are important for the agents. The proposed approach

Authorized licensed use limited to: University of London: Online Library. Downloaded on July 06,2022 at 14:12:15 UTC from IEEE Xplore. Restrictions apply.

2475-1502 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TG.2020.3032796, IEEE
Transactions on Games

EVOLUTIONARY COMPUTATION FOR GAME-PLAYING 7

has some limitations, first, the approach is based on a

greedy solution, which can be improved with dynamic

programming [59]. However, according to the authors,

using dynamic programming will increase the test goal

creation time [59]. Another limitation is that the multiple

greedy-policy inverse reinforcement learning agent

generalizes the exploited sequences to all situations,

which can cause problems when learning the behavior of

the tester. Moreover, the agent may not fulfill a goal due

to two reasons, the infeasibility of the goal, and a

prevention caused by a bug. Thus, the authors stated that

they allowed the agent to play the game for a specific

number of steps. When the last step occurs, if the goal was

not reached, then it may be unreasonable to let the agent

target the next goal [59]. In 2020, Ariyurek et al. [60]

proposed several modifications to their human-like agent

presented in [59] to enhance bug finding. The proposed

modifications were applied to the MCTS policy, where

they tested different strategies such as using

transpositions, tree reuse, knowledge-based evaluations,

Boltzmann rollouts, MixMax, and Single-Player-MCTS.

In another study, Mugrai et al. (2019) [61] proposed

an agent based on MCTS and an evolving utility function

to create different procedural personas and human

playstyles, which allowed creating automated playtesting

system. The player style developed in the study imitates a

long-term human player who follows a strategy of

optimizing number of points by maximizing them via a

series of actions and after a specific number of moves.

This approach can be used for game balancing.

Stahlke et al. (2019) [62] developed a framework with

expert systems and artificial intelligent agents that can

perform simulated testing sessions. The goal of the agent

is to behave like human players when navigating the game

world by mimicking the player’s tendency to explore,

wander, and becoming lost. The framework is built on top

of Unity game engine. Moreover, the framework is able

to log and record the agent’s exploration behavior for

game design analysis. The authors stated that the

framework could be limited because of the nature of

expert systems. Though, using their approach does not

require training data.

Most of the discussed approaches that apply restricted

strategies face difficulties in generalizing their solutions

to other games [62].

• Mixed algorithms: [63, 64, 65]

MCTS along with Stratabots were used by Horn et al.

(2018) [63] to improve state exploration and enhance the

search speed of Stratabots, and to imitate human behavior

while playing a game, in addition to studying the

effectiveness of the game difficulty. Stratabots in the

study were crafted to allow the agents to understand the

scores and take and undo actions. Moreover, the authors

mentioned that their Stratabots take greedy approaches to

select actions that maximize the score. MCTS was

introduced in the study to improve the creation of

Stratabots and minimize the hand-crafted features, where

performance can be considered a Stratabots’ limitation.

Holmgård et al. (2018) [64] presented the use of

procedural personas which are archetypal player models

that are non-player characters provided with human-like

personalities to automatically playtest game content. The

developed procedural personas were based on MCTS and

Evolutionary Computation algorithms to test and improve

the game design and balance game’s difficulty. The

limitations of this study are that the developed personas

were inherently subjective where a utility function should

be constructed by the game or the level designer to test the

content of the game. The authors suggested using a

technique that allows learning utility functions from

demonstration such as using inverse reinforcement

learning methods.

In another aspect, Keehl and Smith (2019) [65]

proposed an extension to their previous work [33] to allow

using MCTS with Machine Learning to imitate human

behavior and to improve the agent’s exploration. Using

imitation learning in this approach allowed the agent to

summarize a collection of gameplay samples into a

reactive decision policy which could help game designers.

One of the limitations mentioned is that in order for the

agent to work effectively, it has to be testing deterministic

games only.

4) Scenario-Based Approaches

We define scenario-based approaches as techniques

and frameworks that run tests which are based on

predefined human made sequences of actions, or human

requested actions. Some approaches were found to record

human sequences of actions and replay them [66, 67].

Other investigated studies performed sequences of actions

automatically through game simulations [68, 69, 70].

While some others used semi-automatic approaches that

work with the help of a human tester commanding the tool

to debug the visuals of the game via predefined criteria

using image processing [71, 72, 73].

• Record and Replay: [66, 67]

Ostrowski and Samir (2013) [66] proposed a model

that creates and executes regression tests within video

games, where the approach utilizes record and playback

mechanisms. The authors stated that the record and

playback technique is easy to use and it requires minimal

programming skills, which makes it easily used by game

testers to create meaningful tests. The approach works by

recording events’ steps which are compared later to a

playback of the game to check for bugs and errors.

Another benefit is that it can be generally applicable to

any type of games as mentioned in the study, where they

applied the approach to different genres of games.

Though, generalization might not be feasible due to

integration issues.

In another study, Bécares et al. (2017) [67] presented

a theoretical framework for beta testing games. The

proposed approach provides two testing methods. The

first is based on recording game sessions as input

commands from keyboard or mouse that capture playing

Authorized licensed use limited to: University of London: Online Library. Downloaded on July 06,2022 at 14:12:15 UTC from IEEE Xplore. Restrictions apply.

2475-1502 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TG.2020.3032796, IEEE
Transactions on Games

EVOLUTIONARY COMPUTATION FOR GAME-PLAYING 8

through the whole game, and then reapply these

commands to test the game again automatically. The

second approach is based on recording the internal

messages that are defined as high level actions and the

timeframe context of these actions when the game is fully

played. In addition to that, they proposed using petri nets

to assess and support the testing process in this method,

especially when the levels are updated and the input traces

are not accurate. This approach supports compatibility

and regression testing. However, one of the limitations of

this approach is that there are some cases where this

approach cannot work properly when levels are updated

and playthrough recordings are not modified. On the other

hand, the approach has AI behavior to allow

harmonization between the traced messages (high level

actions) and the created petri nets, to prevent agents

getting stuck during replays.

• Game simulation: [68, 69, 70]

Jung et al. (2004) [68] purposed a Virtual Environment

Network User Simulator (VENUS) system to perform

automated beta tests. This approach supports game testers

and reduces development resources. The authors stated

that VENUS system supports generality and scalability,

where VENUS virtual client engine can easily simulate

any kind of online games. Moreover, the users of the

system can make large number of simulations to test the

game server’s capacity and to perform stress tests. One of

the benefits mentioned in the study is the ability of storing

internal game data from the game server to the database

for analysis purposes. However, there are some

limitations in this approach. One of them is that the

system must be coupled with the game code to allow

simulations and testing. This limits the generality of the

approach. Thus, to apply the system on different games,

major modifications need to be introduced to match with

the targeted game for testing.

Because of the limitations in VENUS [68], Cho et al.

(2010) [69, 70] presented a newer version of the system

called VENUS II that supports black box testing, to

separate the tool from the game’s code. The new tool

supports black box testing by passing the game’s grammar

and virtual maps to the tool using Game Description

Language format, to create a way of simulating the game

through defined scenarios that virtual agents can perform

automatically.

• Visual debugging: [71, 72, 73]

Nantes et al. (2008) [71] proposed a semi-automatic

framework that applies Computer Vision technologies to

support the testing team, which helps in improving and

accelerating the testing process. The approach uses a

combination of two algorithms, Harris corner as

descriptor and Canny edge as detector. This combination

allows identifying jagged edges and visual distortions

within the game environment.

In another study, Mozgovoy and Evgeny (2017) [72]

proposed a semi-automated smoke tests framework. The

goal of smoke tests is to perform system checkups.

Automated user interface smoke tests should be able to

access the system under test as any user and perform

actions. However, the authors stated that when it comes to

testing graphical elements and hand drawn user interfaces,

some artistic changes might be implemented such as

animations and changes of sprites and positions, which

are difficult to interact with and test using traditional

smoke testing frameworks. As a result, the authors

proposed a framework that utilizes image processing and

recognition algorithms with UI automation framework

called Appium. The authors used OpenCV library and

integrated it with Appium tests to recognize game objects

and hand drawn UI elements in Unity game engine. The

approach can perform test scenarios and use image

recognition to analyze screen content. The presented

approach can be used to check visual failures in the game

under test.

In a similar way, Tuovenen et al. (2019) [73] presented

an approach called MAuto, which focuses on testing

mobile video games. The tool records user-interactions

and exports them for playback in Appium. MAuto

integrates image recognition by using AKAZE features to

recognize objects in the taken screenshots. When

MAuto’s users perform recording, the tool creates test

scripts to allow reproducing the recorded events. The

application recognizes objects and UI controls which are

stored as images during the recordings, and then it

compares them to ground truth objects and images to

identify errors.

Computer Vision is useful when making decisions

about objects and game visuals, where this evaluation

process can be thought of as game environment

inspection. However, such agents might not be able to

capture the psychological part of the game, meaning

entertainment inspection might not be feasible [71].

Moreover, image recognition-based testing agents might

fail in recognizing errors [72] [73]. In addition, the image

recognition process and the pixel comparison algorithms

could be time consuming [72] [73]. Another limitation is

that testing dynamic objects through recognition is hard

to apply [73].

5) Model-Based Approaches

 These approaches are based on abstracting the game’s

workflow into formal representations and models, which allow

verification of flow of events, data, logic, or control. Several

approaches were found in the literature that used different types

of modeling techniques. Some studies used petri nets [74, 75].

While some others used Unified Modeling Language (UML)

[76, 77].

• Petri nets: [74, 75]

Yessad et al. (2014) [74] presented a formal

framework that is based on petri nets to assist designers in

modeling and automatically verifying games at design

stage and before the implementation starts. The authors

chose colored petri nets, which is one of the petri nets

types [78], because these models give better specification

by using colors to model data. Moreover, they used a

Authorized licensed use limited to: University of London: Online Library. Downloaded on July 06,2022 at 14:12:15 UTC from IEEE Xplore. Restrictions apply.

2475-1502 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TG.2020.3032796, IEEE
Transactions on Games

EVOLUTIONARY COMPUTATION FOR GAME-PLAYING 9

specific class of colored petri nets called symmetric nets

with bags. The approach was integrated with Temporal

Logic language to compare states and to verify errors

using model checking and counter example mechanisms.

Reuter et al. (2015) [75] adopted using petri nets to

support the automated testing process of video games.

The authors presented the use of colored petri nets to find

and detect structural errors in a scene-based game. The

colored petri nets models were automatically generated

from the game engine that the approach was integrated

with. The proposed approach was used to verify the game

through applying reachability analysis, and it was able to

detect livelocks and deadlocks. The limitation of this

approach is that it depends on scene-based games and the

engine it was integrated with.

• Unified Modeling Language: [76, 77]

Schaefer et al. (2013) [76] presented an automated

testing framework called Crushinator that reduces the

dependency upon beta testing. This framework was

developed to provide a game-independent testing tool to

verify event-driven client-server based game applications

via automating multiple testing methods such as model

based testing, load and performance testing, and

exploratory testing. The model based procedure is applied

by using behavior models of the system being tested,

where a UML package within the tool is employed to

extract UML state machine models from the game for

testing purposes. The extracted models represent the

behavior of the system under test, and the extracted paths

from the models can be used to generate test cases. The

authors stated that the tool can perform a complete

coverage testing compared to other beta testing tools.

Where coverage testing is defined as the process of

identifying parts of the software that have not been

exercised during testing, which guides the testing of

important parts of the software and gives a clear checklist

of test completeness [79]. The framework is easy to

integrate with other games due to the nature of isolation

and game independency. However, one of the limitations

mentioned in the study is that due to the focus on event-

driven game servers, the framework might not be

applicable nor beneficial for other systems and games.

Iftikhar et al. (2015) [77] presented a model based

testing approach using UML diagrams. Their approach

automates three main steps of software testing which are

test case generation, test oracle generation, and test case

execution. The approach works by simulating the inputs

required for playing games. The authors stated that the

proposed approach was able to find and detect

major faults. However, there were some limitations,

where the authors stated that the users must have

software engineering background to be able to

understand the models. Moreover, the models must be

created for each game before using the approach. The

authors stated that this approach might not be able to

cover all paths and variations of functionalities.

• Game Description Language: [80]

Haufe et al. (2012) [80] introduced a formal language

to describe game-specific knowledge as state sequence

invariants by following the semantics of Game

Description Language. The proposed language uses

Prolog-like inference mechanism to represent rules that

allow players to make legal moves. Moreover, the

approach allows automated verification of systems by

checking state sequence invariants using Temporal Game

Description Language extension, which supports

checking local properties of games that can be proved by

induction rather than by complete exhaustive search.

• Linear Temporal Logic: [81]

Varvaressos et al. (2014) [81] presented a framework

that can perform runtime monitoring of games, which can

greatly speed up the testing phase through detecting bugs

automatically while games are being played. The

framework uses logical specification language known as

first order linear temporal logic LTL-FO+, where the

usage of this specification language would make it

possible to write and check safety and temporal properties

in games.

• ModelMMORPG: [82, 83]

Schatten et al. (2017) [82, 83] used a game logic-

oriented approach that allows testing game quests and

objectives, in addition to supporting load and stability

testing. The tool depends on modeling the game logic

using ModelMMORPG modeling language that allows

modelling a wide range of various large-scale multi-agent

systems scenarios. The model in the tool is translated into

concrete implementation of agent classes facilitated

through an agent-based platform called (Smart Python

Agent Development Environment). A variation of game

related tasks like walking around, fighting etc., are

allowed to be performed by agents by establishing

relationships between agents and low-level

implementation of the game under test.

In this study we reviewed and analyzed 51 studies and their

proposed game testing approaches. The following figure

(see Figure 1) presents the trends in the literature, where the

figure depicts the number and category of each approach per

year.

B. RQ2 - What are the objectives of the automated game

testing approaches available in the literature?

From our analysis, we categorize the testing objectives of the

studied game testing approaches as follows:

1) Testing for functional correctness

The goal of this testing objective is to ensure that the game

is behaving as expected. To do so, games could be checked

through verifying their functionalities, software code, the

control flow of events, or the flow of data. This objective was

implemented by several approaches, search-based

approaches could check the availability of faulty states [16,

30, 22, 36, 39], goal-directed approaches [47, 49, 52] and

human-like approaches [54, 59, 60, 63] could be used in

Authorized licensed use limited to: University of London: Online Library. Downloaded on July 06,2022 at 14:12:15 UTC from IEEE Xplore. Restrictions apply.

2475-1502 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TG.2020.3032796, IEEE
Transactions on Games

EVOLUTIONARY COMPUTATION FOR GAME-PLAYING 10

triggering invalid states and executing incorrect events,

scenario-based approaches would give some insights on

broken software code [66, 67, 69, 70, 73], and model-based

approaches can proof-check the reachability of deadlocks,

livelocks, or invalid states [75, 77, 80, 81, 82].

2) Testing for multiplayer stability

This testing objective aims at multiplayer games and

testing the networking stability and capacity. The approaches

that implemented this objective were using massive number

of agents to check the network performance, stability, and the

ability of handling huge capacity of active players sending

commands and events through the network. This objective

was targeted by some of the approaches, like, scenario-based

approaches through running multiple simulation agents at the

same time [69, 70], and model-based approaches by checking

concurrent events and mimicking the flow of data and events

in multiplayer games [82, 83].

3) Testing for performance

Testing games’ performance is the goal of implementing

this testing objective. This testing objective was applied by

one study only, which implemented a goal-directed

approach. Pfau et al. [47] stated that their agent can record

performance metrics such as (FPS, RAM, CPU usage) at

certain time, and these metrics can be continuously tracked

over the game iteration life time resulting into the ability of

recognizing performance problems and their causes.

4) Testing for visual correctness

The goal of this testing objective is to verify games’

visuals, such as shaders, game UI, 3D models and

animations, etc. [6]. Scenario-based studies that focused on

visual debugging tackled this objective by implementing

image recognition algorithms and analyzing pixels

differences [71, 72, 73].

5) Testing for game design correctness

This testing objective is meant to test various aspects that

affect the user experience, and which are related to the

gameplay and its rules. The correctness of the created game

environment and the placement of its objects is one of these

aspects. Incorrectly placed game objects might affect the user

experience and the playability of a game, where some bugs

could be introduced because of that, such as stuck spots, and

world holes [6]. Another aspect is imprecise and

inappropriate game rules and constraints that are part of the

game designers’ job to create. Thus, testing such aspects is

crucial to maintain a better user experience. This objective

was targeted by several approaches, search-based approaches

could help in exploring states that violate game rules [30, 22,

35, 39, 40, 41, 42], goal-directed approaches [47, 49, 50, 51]

and human-like [20, 57, 64, 65] could help in getting some

insights related to agents and players getting lost, stuck

within game levels or getting distracted by other elements in

the game rather than the game’s objective, and scenario-

based approaches that help in getting insights and analysis on

how changes of level would affect the game winning

scenarios [67].

6) Testing for game balance and fairness

This testing objective focuses on verifying the fairness of

the game and the balance of game’s parameters. Search-

based approaches could check the availability of states that

affected choosing certain paths repeatedly in the decision

graphs because of game parameters [31, 32, 33, 34, 39, 42],

goal-directed approaches could help in checking the

variations of actions taken and their effects in winning or

losing games [48, 50, 51, 52, 53], and human-like approaches

could help in checking game fairness by checking the

winning conditions or checking game parameters that

motivated agents’ to take similar actions because of their

advantage [54, 55, 20, 56, 57, 58, 61, 64, 65].

7) Testing for progression and learnability

The goal of this objective is to verify that the player is

going to be able to learn the game, progress through levels,

and complete the game. Some approaches implemented this

objective in their agents, for instance, search-based [37] and

goal-directed [48] approaches could help in checking the

ability of finishing a game. Moreover, human-like

approaches could help in studying and analyzing players’

psychological behaviors in learning and discovering game

areas [56, 61, 62].

8) Testing for physical correctness

This objective aims at verifying the state of physical

properties in the game world. These properties could be

related to collisions, frictions, gravity, etc. Only one study

was found to target this testing objective, where a

goal-directed approach by Joakim et al. [49] utilized

Reinforcement Learning to check collision properties and the

ability of going through walls or getting stuck in defined

stuck points.

1 1
2

1
2

5

3

1

3 31

1
2

2

2

1 1
2

1

2

1

1

1

1

3 5

2

0

1

2

3

4

5

6

7

8

9

10

2
0

0
4

2
0

0
5

2
0

0
6

2
0

0
7

2
0

0
8

2
0

0
9

2
0

1
0

2
0

1
1

2
0

1
2

2
0

1
3

2
0

1
4

2
0

1
5

2
0

1
6

2
0

1
7

2
0

1
8

2
0

1
9

2
0

2
0

N
u

m
b

e
r

o
f

St
u

d
ie

s

Publication Year

Testing Approaches per Publication Year

Search-based Goal-based Model-based Scenario based Human-like

Figure 1. Analysis of Testing Approaches per Year

Authorized licensed use limited to: University of London: Online Library. Downloaded on July 06,2022 at 14:12:15 UTC from IEEE Xplore. Restrictions apply.

2475-1502 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TG.2020.3032796, IEEE
Transactions on Games

EVOLUTIONARY COMPUTATION FOR GAME-PLAYING 11

The following figure (see Figure 2) shows analysis of the

testing approaches and the associated testing objectives.

C. RQ3 - How do researchers validate their developed

automated game testing approaches?

Several games were used to validate the testing approaches.

The results and analysis depicted in Figure 3 show that Tile-

matching games were the most used to test human-like

approaches. Moreover, search-based approaches were tested on

more variations compared to other approaches. Nevertheless,

most of the approaches presented were not generally applicable,

where most of the studies applied their testing approach to one

genre. However, Zheng et al. [39] argued that the

implementation of their search-based approach could be

generally applicable to different types and genres of games.

Moreover, to support the validation of some of the approaches,

some authors shared the source code of their approaches

publicly to allow other researchers to improve, extend, and

learn from their work. Keehl et al. open sourced both of their

search-based [33] and human-like [65] approaches Monster-

Carlo [84] and Monster-Carlo 2 [85]. Furthermore, Schatten et

al. [82, 83] publicly shared their implementation of their model-

based approach [86]. Also, Varvaressos et al. [81] open sourced

their model-based solution [87].

D. RQ4-What are the shortcomings in the current state of the

affairs?

After studying and analyzing the found playtesting

techniques, this question is answered with the analysis

outcomes discussed in Section IV, and the implications of the

study in Section V. (Table I. summarizes our findings).

V. IMPLICATIONS OF THE STUDY

The results and observations in Section IV reveal that there

are still gaps and open issues that have not been addressed in

the literature. We discuss such gaps and open issues, and

suggest future work, in the sequel.

A. Game testing approaches and testing objectives

• We presented automated game testing categories in

Section IV based on the studied approaches. However,

more categories could be added. For example,

collaborative approaches were not discussed in the

literature. Thus, it might be a new area of research to

show how multi-agents with their stand-alone

behaviors can interact and collaborate to test a game.

Collaborative testing would support verifying

different testing goals, such as, multiplayer stability,

performance, functional correctness, game design

correctness, etc.

• Another interesting field that requires more research is

using computer vision and image processing methods

to check and verify testing goals other than visual

correctness.

• Model-based approaches were used to mainly test

functional correctness of games. However, they could

also be used to check game design and game balancing

issues, which are missing in the literature.

• We observe that model-based approaches in the

literature were mostly applied without looking at the

software, meaning, the verification checks were

directly applied to models without any communication

with the code and the game environment. Thus, we

suggest that a future work could consider

5

3

5

5

4

2

2

1

3

7

4

4

6

5

9

1

1

3

1

0 5 10 15 20 25

Search-based

Goal-based

Model-based

Scenario based

Human-like

Number of Testing Goals

Te
st

in
g

A
p

p
ro

ac
h

e
s

Analysis of Testing Goals per Testing Approach

Functional Correctness Multiplayer Stability

Performance Visual Correctness

Game Design Correctness Game Balance and Fairness

Progression and Learnability Physical Correctness

Figure 2. Analysis of Testing Approaches and Testing Objectives

1 1 1 1 1 1
2 2

1 1 1 11

2

2
1

1

1 1
2

11 1

1

3

1

1

1

3

1

1

2

2

0

1

2

3

4

5

6

7

Sp
o

rt
s

Tu
rn

-b
as

e
d

C
ar

d
s

Sh
o

o
t

'e
m

 u
p

A
rc

ad
e

Sc
e

n
e-

b
as

ed
 T

ile
-m

at
ch

in
g

Sa
n

d
b

o
x

B
o

ar
d

Si
m

u
la

ti
o

n
P

la
tf

o
rm

A
d

ve
n

tu
re

P
u

zz
le

M
M

O
R

P
G

G
V

G
A

I
To

w
er

 d
ef

en
se

Ed
u

ca
ti

o
n

al
St

ea
lt

h

N
u

m
b

e
r

o
f

Te
st

in
g

A
p

p
ro

ac
h

e
s

Game Genres

Analysis of Testing Approaches per Game Genre

Search-based Goal-based Model-based Scenario based Human-like

Figure 3. Analysis of Tested Game Genres

Authorized licensed use limited to: University of London: Online Library. Downloaded on July 06,2022 at 14:12:15 UTC from IEEE Xplore. Restrictions apply.

2475-1502 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TG.2020.3032796, IEEE
Transactions on Games

EVOLUTIONARY COMPUTATION FOR GAME-PLAYING 12

implementing testing techniques for creating models

from code to show flow of events similar to that in the

code. Moreover, future research might also consider

connecting models with agents that are interacting

with the game environment, to observe more

information and to allow different types of testing

goals.

• Several implementations of the scenario-based

approaches were lacking the adaptation to

environmental changes in the game, those

implementations were either based on recorded

playthroughs or known sequences of actions. Thus, we

recommend that future work in this field shall consider

researching techniques that can inform and adapt

predefined scenarios to work with the newly added

environmental changes.

• Another area that could be researched in the scenario-

based approaches is the development of counter-

example scenarios and checking whether these

scenarios can be reached or not. This approach would

help in checking the correctness of both game’s

functionality and design.

• All the studied testing approaches were used to show

faults or to give insights related to the game. However,

none of them were used to verify and recommend

changes. Thus, we observe that new research direction

could be implementing a recommendation system that

can check the game design and recommend changes to

enhance game experiences.

• Building playtesting agents that use automated online

learning and parameter tuning techniques that are

based on self-learning and self-playing without the

need of prior human knowledge or previously

available data samples. This would help in solving the

limitations related to requiring training data,

parameters tuning, and interactive sessions applied to

the agents.

• Human-like agents were proven to be working by

several of the recent studies. These approaches were

used to test different objectives. However, using these

human-like agents with the injected human data to

analyze psychological aspects such as enjoyment,

excitement, feeling fear and being bored, were not yet

studied.

• Several testing objectives were found to be targeted by

the literature approaches. However, none of the studies

aimed at audio correctness testing objective.

• Studies that implemented visual debugging

approaches focused on static elements on screen.

Hence, we observe that more studies are needed for

checking dynamic visual elements such as visual

effects, animations, and particle systems.

• Most of the search-based approaches were exploring

game states to check invalid states. However, none of

the studies looked at deadlocks, livelocks, or

conflicting and overlapping valid states where two or

more valid states are occurring at the same time, but

they should not be.

• The literature lacks automated testing approaches that

verify procedurally generated content in games.

• With the increasing interest in virtual reality and

augmented reality games [88] [89], we observe that

one of the research areas that needs to be explored is

to automatically test games developed with such

technologies.

B. Game testing general applicability

• Building a general game testing agent that is not biased

towards a certain game genre or game development

environment.

• From Figure 3, we can see that some game genres were

tested by some approaches and not by others.

Moreover, some game genres were not tested, such as

fighting games or first-person shooting games. Thus,

more applications of automated game testing to

different game genres is suggested.

• Most of the tested game genres had small state space

complexity, which might not be challenging. It would

be more beneficial if future research focuses on testing

games with practical complexity and state space.

• Due to the lack of publicly available relevant artifacts,

we suggested that open source projects/data should be

encouraged in future works to support studies and

advancements in the field.

VI. THREATS TO VALIDITY

As any survey study, the validity of the findings of this

research faces some threats. We cannot ensure that we have

studied all available approaches; there might be other

approaches either in the literature or in the industry that we were

not able to reach. We mitigated this by considering studies from

most prominent literature databases specifically (Google

Scholar, IEEE, ACM, Springer, Science Direct) using the same

search string. Moreover, to ensure that we collected adequate

studies, we utilized both forward and backward snowballing.

 In this study we categorized automated game testing

approaches studied from the literature, in addition to

categorizing game testing objectives. However, the

categorization and classification procedure was a creative,

research and development process. Thus, the own subjective

nature of creativity imposes an external validity risk.

The observations concluded from our study were based on

using our developed comparison framework and its attribute list

presented in Section III-D. These attributes were used to

compare between found approaches in literature and to extract

answers to the research questions. The comparison framework

and its attribute list were developed to cover the important

characteristics of automated game testing approaches.

However, additional attributes may be introduced by other

researchers to further study and analyze automated game testing

approaches.

Authorized licensed use limited to: University of London: Online Library. Downloaded on July 06,2022 at 14:12:15 UTC from IEEE Xplore. Restrictions apply.

2475-1502 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TG.2020.3032796, IEEE
Transactions on Games

EVOLUTIONARY COMPUTATION FOR GAME-PLAYING 13

VII. CONCLUSION

In this study we investigated automated game testing

approaches in the literature. We developed a framework based

on a set of attributes identified as a result of an extensive survey

of existing approaches. Accordingly, we answered our research

questions using our assessment framework discussed. We

analyzed approaches available in the literature against our

framework. We classified and compared the approaches

accordingly.

Our findings have shown that there is still a gap and future

work required in this field. Moreover, we believe that

automated game testing can improve the game development life

cycle by finding errors, enhancing the gameplay and reporting

game analysis in less time and effort supporting game designers

and developers and improving their productivity.

ACKNOWLEDGMENT

The authors wish to acknowledge King Fahd University of

Petroleum and Minerals (KFUPM) for providing the facilities

to carry out this research. Many thanks are due to the

anonymous referees for their detailed and helpful comments.

Aghyad Albaghajati M.S student in

Software Engineering from King Fahd

University of Petroleum and Minerals,

Saudi Arabia. He earned his B.S in

Software Engineering from King Saud

University, Saudi Arabia, in 2016. His

research interests are Software Testing,

Software Construction, Software

Architecture and Design and Game

Development.

Moataz Ahmed received his PhD in

computer science from George Mason

University in 1997. Dr. Ahmed is

currently a faculty member with the

Information and Computer Science

Department, King Fahd University of

Petroleum and Minerals, Saudi Arabia.

He also severs as Adjunct/Guest

Professor in a number of universities in

the US and Italy. During his career, he

worked as a software architect in several software houses. His

research interest includes artificial intelligence and machine

learning; and automated software engineering, especially,

artificial intelligence based software testing, software reuse,

and cost estimation. He has supervised a number of theses and

published a number of scientific papers in refereed journals and

conferences in these areas.

Approach Implementations Testing Objectives Game Genres

Search-Based

• Evolutionary Algorithms: [16, 30, 31, 32, 39]

• Graph search:

 • Depth first: [41]

 • A*: [22, 35]

 • MCTS: [33, 34, 40]

 • Cicero: [42]

• RRT: [36, 37, 38]

• Functional correctness

• Game design correctness

• Game balance and fairness

• Progression and learnability

Sports, Turn-based, Cards, Arcade, Simulation, Tile-

matching, MMORPG, Puzzle, Platform, Tower defense,

Stealth, GVGAI

Goal-Directed
• Reinforcement learning: [47, 48, 49, 50]

• Restricted heuristics: [51, 52, 53]

• Functional correctness

• Game design correctness

• Game balance and fairness

• Progression and learnability

• Physics correctness

• Performance

Scene-based, Board, Tile-matching, Educational

Human-Like

• Machine learning: [54, 55, 20, 56, 57]

• Restricted heuristics: [58, 59, 60, 61, 62]

• Mixed algorithms:

 • MCTS and Stratabots: [63]

 • MCTS and Evolutionary Algorithms: [64]

 • MCTS and Machine Learning: [65]

• Functional correctness

• Game design correctness

• Game balance and fairness

• Progression and learnability

Sports, Shoot 'em up, Tile-matching, Sandbox, Puzzle,

GVGAI, Cards, Adventure

Scenario-Based
• Record and Replay: [66, 67]

• Game simulation: [68, 69, 70]

• Visual debugging: [71, 72, 73]

• Functional correctness

• Game design correctness

• Visual correctness

• Multiplayer stability

Adventure, MMORPG, Sports, Arcade

Model-Based

• Petri nets: [74, 75]

• Unified Modeling Language: [76, 77]

• Game Description Language: [80]

• Linear Temporal Logic: [81]

• ModelMMORPG: [82, 83]

• Functional correctness

• Multiplayer stability

Educational, Platform, Scene-based, MMORPG, Puzzle

TABLE I
SUMMARY OF THE STUDY FINDINGS

Authorized licensed use limited to: University of London: Online Library. Downloaded on July 06,2022 at 14:12:15 UTC from IEEE Xplore. Restrictions apply.

2475-1502 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TG.2020.3032796, IEEE
Transactions on Games

EVOLUTIONARY COMPUTATION FOR GAME-PLAYING 14

REFERENCES

[1] Blow, J., 2004. Game Development: Harder Than You Think, Queue,
vol. 1, nro. 10, ss. 28–37, February 2004.

[2] Kanode, C. M. and Haddad, H. M., 2009. Software Engineering

Challenges in Game Development, in Information Technology: New
Generations (ITNG ’09). Sixth International Conference on, ss. 260 –

265.

[3] E. Aarseth, “A narrative theory of games,” in Proceedings of the
international conference on the foundations of digital Games. ACM,

2012, pp. 129–133.

[4] Redavid, Claudio, and Adil Farid. "An overview of game testing
techniques." Västerås: sn (2011).

[5] “Gamesindustry.Biz presents...the year in numbers 2018.” [Online].

Available: https://www.gamesindustry.biz/articles/2018-12-17-
gamesindustry-biz-presents-the-year-in-numbers-2018

[6] L. Levy and J. Novak, “Game Development Essentials: Game QA &

Testing,” Cengage Learning, 2009, pp.58-70.
[7] C. P. Schultz and R. D. Bryant, “Game Testing: All in One,” Mercury

Learning & Information, 2016, pp.125-128.

[8] V. R. Basili and R. W. Selby, “Comparing the effectiveness of software
testing strategies,” IEEE transactions on software engineering, no. 12,

pp. 1278–1296, 1987.

[9] Klaib, Mohammad FJ. "A parallel tree based strategy for 3-way
interaction testing." Procedia Computer Science 65 (2015): 377-384.

[10] D. R. Kuhn, D. R. Wallace, and A. M. Gallo, “Software fault

interactions and implications for software testing,” IEEE transactions
on software engineering, vol. 30, no. 6, pp. 418–421, 2004.

[11] Redavid, Claudio, and Adil Farid. "An overview of game testing

techniques." Västerås: sn (2011).
[12] A. Bertolino, “Software Testing Research: Achievements, Challenges,

Dreams,” Proceedings of The Future of Software Engineering at ICSE

2007, pp. 85-103, 2007.
[13] Starr, K. Testing Video Games Can’t Possibly Be Harder Than an

Afternoon With Xbox, Right? Seattle Weekly (July 2007).

[14] Lewis, Chris, and Jim Whitehead. "The whats and the whys of games
and software engineering." Proceedings of the 1st international

workshop on games and software engineering. 2011.

[15] J. P. Davis, K. Steury, and R. Pagulayan, “A survey method for
assessing perceptions of a game: The consumer playtest in game

design,” Game Studies, vol. 5, no. 1, pp. 1–13, 2005.

[16] B. Chan, J. Denzinger, D. Gates, K. Loose and J. Buchanan,
“Evolutionary behavior testing of commercial computer games,”

Proceedings of the 2004 Congress on Evolutionary Computation, Jun.

2004.
[17] J. Ortega, N. Shaker, J. Togelius and G. N. Yannakakis, “Imitating

human playing styles in Super Mario Bros,” Entertainment Computing,

vol. 4, pp. 93-104, Apr. 2013.
[18] A. Khalifa, A. Isaksen, J. Togelius, and A. Nealen, “Modifying mcts

for human-like general video game playing.” in IJCAI, 2016, pp. 2514–

2520.
[19] Yarwood, Jack. “A Look at How Different-Sized Studios Approach the

Challenges of QA.” Sep 2020. [Online]. Available:
www.gamasutra.com/view/news/359240/A_look_at_how_differentsiz

ed_studios_approach_the_challenges_of_QA.php.

[20] Gudmundsson, Stefan Freyr, et al. "Human-like playtesting with deep
learning." 2018 IEEE Conference on Computational Intelligence and

Games (CIG). IEEE, 2018.

[21] Thompson, Tommy. “The Secret AI Testers inside Tom Clancy's The

Division.” Sep 2020. [Online]. Available:

www.gamasutra.com/blogs/TommyThompson/20200304/359028/The

_Secret_AI_Testers_inside_Tom_Clancys_The_Division.php.
[22] De Mesentier Silva, Fernando, Borovikov, Igor, Kolen, John, Aghdaie,

Navid, AND Zaman, Kazi. "Exploring Gameplay With AI Agents"

AAAI Conference on Artificial Intelligence and Interactive Digital
Entertainment (2018).

[23] Southey, Finnegan, et al. "Semi-Automated Gameplay Analysis by

Machine Learning." AIIDE. 2005.
[24] Roohi, Shaghayegh, et al. "Review of intrinsic motivation in

simulation-based game testing." Proceedings of the 2018 CHI

Conference on Human Factors in Computing Systems. 2018.
[25] Zarembo, Imants. "Analysis of Artificial Intelligence Applications for

Automated Testing of Video Games." Proceedings of the 12th

International Scientific and Practical Conference. Volume II. Vol. 170.
2019.

[26] B. Kitchenham, “Procedures for performing systematic reviews,”
Keele, UK, Keele University, vol. 33, no. 2004, pp. 1–26, 2004.

[27] M. O. Riedl and A. Zook, “Ai for game production,” in 2013 IEEE

Conference on Computational Inteligence in Games (CIG). IEEE,
2013, pp. 1–8.

[28] Wohlin, Claes. "Guidelines for snowballing in systematic literature

studies and a replication in software engineering." Proceedings of the
18th international conference on evaluation and assessment in software

engineering. 2014.

[29] “Background the origins of game genres.” [Online]. Available:
https://www.gamasutra.com/view/feature/132463/

[30] C. Salge, C. Lipski, T. Mahlmann, and B. Mathiak, “Using genetically

optimized artificial intelligence to improve gameplaying fun for
strategical games,” in Proceedings of the 2008 ACM SIGGRAPH

symposium on Video games. ACM, 2008, pp. 7–14.

[31] P. Garcia Sanchez, A. Tonda, A. M. Mora, G. Squillero, and J. J.
Merelo, “Automated playtesting in collectible card games using

evolutionary algorithms: A case study in hearthstone,” Knowledge-

Based Systems, vol. 153, pp. 133–146, 2018.
[32] Tan, Tse Guan, et al. "Automated Evaluation for AI Controllers in

Tower Defense Game Using Genetic Algorithm." International Multi-

Conference on Artificial Intelligence Technology. Springer, Berlin,

Heidelberg, 2013.

[33] O. Keehl and A. M. Smith, “Monster carlo: An mcts-based framework

for machine playtesting unity games,” in 2018 IEEE Conference on
Computational Intelligence and Games (CIG), Aug 2018.

[34] Zook, Alexander, Brent Harrison, and Mark O. Riedl. "Monte-Carlo
Tree Search for Simulation-based Strategy Analysis."

[35] Hoyt, Andrew, et al. "Integrating Automated Play in Level Co-

Creation." arXiv preprint arXiv:1911.09219 (2019).
[36] Zhan, Zeping, Batu Aytemiz, and Adam M. Smith. "Taking the scenic

route: Automatic exploration for videogames." arXiv preprint

arXiv:1812.03125 (2018).
[37] Chang, Kenneth, Batu Aytemiz, and Adam M. Smith. "Reveal-more:

Amplifying human effort in quality assurance testing using automated

exploration." 2019 IEEE Conference on Games (CoG). IEEE, 2019.
[38] Tremblay, Jonathan, Pedro Andrade Torres, and Clark Verbrugge. "An

algorithmic approach to analyzing combat and stealth games." 2014

IEEE Conference on Computational Intelligence and Games. IEEE,
2014.

[39] Y. Zheng, X. Xie, T. Su, L. Ma, J. Hao, Z. Meng, Y. Liu, R. Shen, Y.

Chen, and C. Fan, “Wuji: Automatic online combat game testing using
evolutionary deep reinforcement learning,” in 2019 34th IEEE/ACM

International Conference on Automated Software Engineering (ASE).

IEEE, 2019, pp. 772–784.
[40] Isaksen, Aaron, Daniel Gopstein, and Andrew Nealen. "Exploring

Game Space Using Survival Analysis." FDG. 2015.

[41] Shaker, Noor, Mohammad Shaker, and Julian Togelius. "Evolving
playable content for cut the rope through a simulation-based approach."

Ninth Artificial Intelligence and Interactive Digital Entertainment

Conference. 2013.
[42] Machado, Tiago, et al. "Ai-assisted game debugging with cicero." 2018

IEEE Congress on Evolutionary Computation (CEC). IEEE, 2018.

[43] J. L. G. S´anchez, F. M. Simarro, N. P. Zea, and F. L. G. Vela,
“Playability as extension of quality in use in video games.” in I-USED,

2009.

[44] L. Nacke, A. Drachen, K. Kuikkaniemi, J. Niesenhaus, H. J. Korhonen,
W. M. Hoogen, K. Poels, W. A. IJsselsteijn, and Y. A. De Kort,

“Playability and player experience research,” in Proceedings of digra

2009: Breaking new ground: Innovation in games, play, practice and
theory. DiGRA, 2009.

[45] J. K¨ucklich and M. C. Fellow, “Play and playability as key concepts

in new media studies,” STeM Centre, Dublin City University, 2004.
[46] J. L. G. S´anchez, N. P. Zea, and F. L. Guti´errez, “From usability to

playability: Introduction to player-centred video game development

process,” in International Conference on Human Centered Design.
Springer, 2009, pp. 65–74.

[47] Pfau, Johannes, Jan David Smeddinck, and Rainer Malaka.

"Automated game testing with icarus: Intelligent completion of
adventure riddles via unsupervised solving." Extended Abstracts

Publication of the Annual Symposium on Computer-Human

Interaction in Play. 2017.
[48] Napolitano, Nicholas. "Testing match-3 video games with Deep

Reinforcement Learning." arXiv preprint arXiv:2007.01137 (2020).

Authorized licensed use limited to: University of London: Online Library. Downloaded on July 06,2022 at 14:12:15 UTC from IEEE Xplore. Restrictions apply.

https://www.gamesindustry.biz/articles/2018-12-17-gamesindustry-biz-presents-the-year-in-numbers-2018
https://www.gamesindustry.biz/articles/2018-12-17-gamesindustry-biz-presents-the-year-in-numbers-2018
http://www.gamasutra.com/view/news/359240/A_look_at_how_differentsized_studios_approach_the_challenges_of_QA.php
http://www.gamasutra.com/view/news/359240/A_look_at_how_differentsized_studios_approach_the_challenges_of_QA.php
http://www.gamasutra.com/blogs/TommyThompson/20200304/359028/The_Secret_AI_Testers_inside_Tom_Clancys_The_Division.php
http://www.gamasutra.com/blogs/TommyThompson/20200304/359028/The_Secret_AI_Testers_inside_Tom_Clancys_The_Division.php
https://www.gamasutra.com/view/feature/132463/

2475-1502 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TG.2020.3032796, IEEE
Transactions on Games

EVOLUTIONARY COMPUTATION FOR GAME-PLAYING 15

[49] Joakim Bergdahl, Camilo Gordillo, Konrad Tollmar, Linus Gisslén,
Augmenting Automated Game Testing with Deep Reinforcement

Learning, IEEE Conference on Games (CoG), 2020

[50] Shin, Yuchul, et al. "Playtesting in Match 3 Game Using Strategic
Plays via Reinforcement Learning." IEEE Access 8 (2020): 51593-

51600.

[51] F. de Mesentier Silva, S. Lee, J. Togelius, and A. Nealen, “Ai as
evaluator: Search driven playtesting of modern board games,” 2017.

[52] de Mesentier Silva, Fernando, et al. "AI-based playtesting of

contemporary board games." Proceedings of the 12th International
Conference on the Foundations of Digital Games. 2017.

[53] Jaffe, Alexander, et al. "Evaluating competitive game balance with

restricted play." Eighth Artificial Intelligence and Interactive Digital
Entertainment Conference. 2012.

[54] Southey, Finnegan, et al. "Machine learning for semi-automated

gameplay analysis." Proceedings of the 2005 Game Developers
Conference (GDC. 2005).

[55] Zook, Alexander, Eric Fruchter, and Mark O. Riedl. "Automatic

Playtesting for Game Parameter Tuning via Active Learning."
[56] Borovikov, Igor, et al. "Winning isn’t everything: Training agents to

playtest modern games." AAAI Workshop on Reinforcement Learning

in Games. 2019.

[57] Pfau, Johannes, et al. "Dungeons & Replicants: Automated Game

Balancing via Deep Player Behavior Modeling."

[58] Devlin, Sam, et al. "Combining Gameplay Data with Monte Carlo Tree
Search to Emulate Human Play." AIIDE. 2016.

[59] Ariyurek, Sinan, Aysu Betin-Can, and Elif Surer. "Automated Video
Game Testing Using Synthetic and Human-Like Agents." IEEE

Transactions on Games (2019).

[60] Ariyurek, Sinan, Aysu Betin-Can, and Elif Surer. "Enhancing the
Monte Carlo Tree Search Algorithm for Video Game Testing." arXiv

preprint arXiv:2003.07813 (2020).

[61] Mugrai, Luvneesh, et al. "Automated playtesting of matching tile
games." 2019 IEEE Conference on Games (CoG). IEEE, 2019.

[62] Stahlke, Samantha, Atiya Nova, and Pejman Mirza-Babaei. "Artificial

Playfulness: A Tool for Automated Agent-Based Playtesting."
Extended Abstracts of the 2019 CHI Conference on Human Factors in

Computing Systems. 2019.

[63] Horn, Britton, et al. "A Monte Carlo approach to skill-based automated
playtesting." Proceedings. AAAI Artificial Intelligence and Interactive

Digital Entertainment Conference. Vol. 2018. NIH Public Access,

2018.
[64] Holmgård, Christoffer, et al. "Automated playtesting with procedural

personas through MCTS with evolved heuristics." arXiv preprint

arXiv:1802.06881 (2018).
[65] Keehl, Oleksandra, and Adam M. Smith. "Monster Carlo 2: Integrating

Learning and Tree Search for Machine Playtesting." 2019 IEEE

Conference on Games (CoG). IEEE, 2019.
[66] Ostrowski, Michail, and Samir Aroudj. "Automated Regression

Testing within Video Game Development." GSTF Journal on

Computing 3.2 (2013).
[67] Bécares, Jennifer Hernández, Luis Costero Valero, and Pedro Pablo

Gómez Martín. "An approach to automated videogame beta testing."

Entertainment Computing 18 (2017): 79-92.
[68] Jung, YungWoo, et al. "VENUS: The online game simulator using

massively virtual clients." Asian Simulation Conference. Springer,

Berlin, Heidelberg, 2004.
[69] Cho, Chang-Sik, et al. "Online game testing using scenario-based

control of massive virtual users." 2010 The 12th International

Conference on Advanced Communication Technology (ICACT). Vol.
2. IEEE, 2010.

[70] Cho, Chang-Sik, et al. "Scenario-based approach for blackbox load

testing of online game servers." 2010 International Conference on
Cyber-Enabled Distributed Computing and Knowledge Discovery.

IEEE, 2010.

[71] Nantes, Alfredo, Ross Brown, and Frederic Maire. "A Framework for
the Semi-Automatic Testing of Video Games." AIIDE. 2008.

[72] Mozgovoy, Maxim, and Evgeny Pyshkin. "Unity application testing

automation with appium and image recognition." International
Conference on Tools and Methods for Program Analysis. Springer,

Cham, 2017.

[73] Tuovenen, J., Mourad Oussalah, and Panos Kostakos. "MAuto:
Automatic Mobile Game Testing Tool Using Image-Matching Based

Approach." The Computer Games Journal 8.3-4 (2019): 215-239.

[74] Yessad, Amel, et al. "Have You Found the Error? A Formal
Framework for Learning Game Verification." European Conference on

Technology Enhanced Learning. Springer, Cham, 2014.

[75] Reuter, Christian, Stefan Göbel, and Ralf Steinmetz. "Detecting
structural errors in scene-based Multiplayer Games using

automatically generated Petri Nets." Foundations of Digital Games,

Pacific Grove, USA (2015).
[76] Schaefer, Christopher, Hyunsook Do, and Brian M. Slator.

"Crushinator: A framework towards game-independent testing." 2013

28th IEEE/ACM International Conference on Automated Software
Engineering (ASE). IEEE, 2013.

[77] Iftikhar, Sidra, et al. "An automated model based testing approach for

platform games." 2015 ACM/IEEE 18th International Conference on
Model Driven Engineering Languages and Systems (MODELS).

IEEE, 2015.

[78] Jensen, Kurt, and Lars M. Kristensen. Coloured Petri nets: modelling
and validation of concurrent systems. Springer Science & Business

Media, 2009.

[79] J. R. Horgan, S. London, and M. R. Lyu, “Achieving software quality
with testing coverage measures,” Computer, vol. 27, no. 9, pp. 60–69,

1994.

[80] Haufe, Sebastian, Stephan Schiffel, and Michael Thielscher.

"Automated verification of state sequence invariants in general game

playing." Artificial Intelligence 187 (2012): 1-30.

[81] Varvaressos, Simon, et al. "Automated Bug Finding in Video Games:
A Case Study for Runtime Monitoring." Proceedings of the 2014 IEEE

International Conference on Software Testing, Verification, and
Validation. 2014.

[82] Schatten, Markus, et al. "Towards an agent-based automated testing

environment for massively multi-player role playing games." 2017
40th International Convention on Information and Communication

Technology, Electronics and Microelectronics (MIPRO). IEEE, 2017.

[83] Schatten, Markus, et al. "Automated MMORPG Testing–An Agent-
Based Approach." International conference on practical applications of

agents and multi-agent systems. Springer, Cham, 2017.

[84] MonsterCarlo. Sep 2020. [Online]. Available:
https://github.com/saya1984/Monster-Carlo

[85] MonsterCarlo2. Sep 2020. [Online]. Available:

https://github.com/saya1984/MonsterCarlo2
[86] ModelMMORPG. Sep 2020. [Online]. Available:

https://github.com/tomicic/ModelMMORPG

[87] BeepBeep. Sep 2020. [Online]. Available:
https://github.com/kimlavoie/BeepBeepPingus

[88] Lee, D., et al. "A development of virtual reality game utilizing Kinect,

Oculus Rift and smartphone." International Journal of Applied
Engineering Research 11.2 (2016): 829-833.

[89] Koutromanos, George, and Lucy Avraamidou. "The use of mobile

games in formal and informal learning environments: a review of the
literature." Educational Media International 51.1 (2014): 49-65.

Authorized licensed use limited to: University of London: Online Library. Downloaded on July 06,2022 at 14:12:15 UTC from IEEE Xplore. Restrictions apply.

https://github.com/saya1984/Monster-Carlo
https://github.com/saya1984/MonsterCarlo2
https://github.com/tomicic/ModelMMORPG
https://github.com/kimlavoie/BeepBeepPingus

