
2475-1502 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TG.2020.3032796, IEEE
Transactions on Games

EVOLUTIONARY COMPUTATION FOR GAME-PLAYING 1 

  

Abstract—The video-game industry has recently grown from 

focused markets to mainstream. The advancements the industry 

has been enjoying motivated researches to propose techniques and 

tools to support the activities across the different phases of the 

game development lifecycle. Game testing is one of the crucial 

activities within the game development process. Due to the nature 

of game testing, many automated game testing techniques have 

been proposed in the literature. However, there is no framework 

that could be used to aid practitioners in selecting appropriate 

techniques suitable for their particular development efforts. In 

this paper we present an attribute-based framework to classify 

and compare these techniques and provide such aid to 

practitioners. The framework is also meant to guide researchers 

interested in proposing new game testing techniques. The paper 

discusses a number of prominent techniques against the 

framework. Analysis of the discussion reveals gaps and suggests 

open points for future research. 

 
Index Terms — Software Testing, Game Development, 

Playtesting, Game Testing, Assessment Framework 

I. INTRODUCTION 

A video game is a highly sophisticated software system with 

several unique aspects like nondeterministic behaviors, visual 

presentations, and creative design [1, 2]. Indeed, games are 

known to be one of the most complex software systems, where 

several subsystems come along together to make a game 

correctly functioning, attractive and entertaining [1] [3]. The 

video game industry has evolved significantly through the  

years [4]. 

As video game industry matures, tremendous fanbase and 

consumers have grown to look to play games with great quality 

and user experience. According to a study by gamesindustry.biz 

[5], the total value of the revenue raised in the global game 

market of games published on PC, Console, Mobile and Web 

platforms in 2018 was about 134.9 billion dollars. Therefore, 

quality assurance and verification processes are of high 

importance in the game development industry [6] [7]. Verifying 

the quality of a game can be done through applying several 

activities, one of these activities is playtesting, which is the 

process of playing through a game and reviewing it [6].   

Software testing and fault detection play key role in software 

development in general [8]. The process of testing software 

consists of validating and verifying software products to meet 

the requirements and design, and to ensure that the software 
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works as expected [9].  

With the increasing demands for more sophisticated software 

development, testing became not only crucial but also more 

difficult [10] [11]. Testing in the software industry, in general, 

has been a laborious and time-consuming work. Consequently, 

automated testing became widely adopted to reduce cost and 

improve quality [12]. 

The current state of games testing in the industry is to hire 

human testers to manually play game builds at various stages of 

the development process [13][14]. However, the complexity of 

video games necessities test automation. It is noteworthy too 

that, in comparison with traditional software development, 

video game quality assurance takes into consideration other 

dimensions other than correctness and performance, such as 

testing the fun factor, game balance, physics, level design,  

multiplayer networking, etc. [15] [16]. Hence, employing 

automated agents can improve and optimize the playtesting 

process [17], thus reducing the testing costs. These agents are 

known to be faster than human testers, where they can explore 

the game space in much shorter time [18]. Automated 

playtesting agents are also capable of playing the game 

repeating the tests multiple times to help game designers and 

developers during the development process.  

Many techniques have been proposed in the literature to 

automate game testing; some of such techniques have also been 

applied and used in the game development industry [19].  For 

example, companies like KING and UBISOFT used AI based 

agents to test, balance and enhance newly added levels [20] 

[21]. Similarly, Electronic Arts (EA) used Machine Learning 

and A* algorithms to find flaws in their games [22] [23]. 

However, to the best of our knowledge, there is no framework 

that could be used to aid practitioners in selecting appropriate 

techniques suitable for their particular development efforts. In 

this paper we present a framework to facilitate classifying and 

comparing techniques based on a set of attributes identified as 

a result of an extensive survey of existing techniques.  We also 

critically assessed and compared the game testing techniques 

available in the literature based on the framework. The 

assessment also revealed eye-opening gaps for future research 

in the area of automated game testing.  

The rest of this paper is outlined as follows. In Section II 

related work is discussed. Research methodology and research 

questions are presented in Section III. Section IV presents the 
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analysis, results and answers for our study's research questions. 

Section V discusses the implications of this study and suggests 

future work in the area. Section VI presents the threats to 

validity of this study. Finally, Section VII concludes our work. 

II. RELATED STUDIES 

We were able to find only very few studies that address 

analyzing game testing techniques. Redavid and Adil (2011) 

[11] presented an overview of game code testing techniques. 

The study [11] focused on the game development process, its 

artifacts and their testing such as combinatorial testing to test 

game software, testing flow diagrams to test game behavior 

from player's perspective, clean room testing,  and more 

software engineering related approaches. However, the study 

was not targeting automated game testing, where such 

automated techniques were not fully mature; instead, the study 

focused on game development life cycle and game testing 

processes from the perspective of software engineering 

practices, where most of the discussed processes were manual 

approaches.  

In another study, Roohi et al. (2018) [24] provided a 

systematic literature review of the intrinsic motivations such as 

autonomy, curiosity, competence, or domination and their 

implementation in AI game-playing agents. The authors 

analyzed several motivations and found that the most targeted 

one in the literature is curiosity. Moreover, the authors pointed 

out at the importance of utilizing players’ collected data in 

multiplayer games to allow mixing between different 

motivations, and to validate, support and improve human-

likeness in simulated agents. Nevertheless, the study did not go 

through automated game testing approaches in the literature. 

Furthermore, the study focused mainly on player modeling and 

took a glance at simulation-based testing. Moreover, the study 

used Google scholar only to find related studies, although other 

search engines could give more related studies. 

Zarembo (2019) [25] presented a short overview of few 

automated playtesting techniques. The study discussed and 

categorized the selected studies. However, the author 

mentioned that his study is not comprehensive, and more 

analysis and studies are required. Moreover, this study did not 

discuss the testing objectives of the reviewed approaches. 

Thus, to the best of our knowledge, our study is the first 

detailed study that compares and discusses the available 

automated game testing techniques in the literature.  

III. RESEARCH METHODOLOGY 

In this section we describe the research methodology carried 

out in this study. Our review research methodology was 

inspired and conducted by following Kitchenham’s guidelines 

for conducting literature reviews [26]. Hence, in this section we 

present the steps that we followed in our research from defining 

the study goal to describing the data extraction process. 

A. Study Goal and Research Questions 

With the increasing interest in video games and with its 

growing fanbases, game development companies have been 

interested in applying automated game testing, where game 

designers and developers can focus on more creative processes 

that could advance the game experience rather than testing the 

game manually, which could take a lot of time and effort [27]. 

Thus, having an agent that can test a game automatically would 

increase the game's quality in a faster manner. 

The main goal of this study is to investigate and  

compare the found automated game testing approaches, their 

applications and their objectives, where we conduct a critical 

assessment and analysis study using an established attribute-

based framework to find answers to our research questions. 

Moreover, this study points out to open problems in the 

literature for the future and to further extend the work in this 

area. 

Conducting this study would help us find answers to the 

following research questions: 

• RQ1-What automated game testing approaches are 

applied in the literature? 

o In answering this research question, we would be  

able to identify the found automated game testing 

approaches in the literature, their benefits, and their 

limitations. 

• RQ2-What are the objectives of the automated game 

testing approaches available in the literature? 

o Answering this research question would investigate 

the goals of the studied automated game testing 

approaches, and their support for game verification, 

balancing, level design, and more. 

• RQ3-How do researchers validate their developed 

automated game testing approaches? 

o Answering this research question would specify game 

genres used to apply the automated game testing 

approaches, and whether the approaches are generally 

applicable or open-source. 

• RQ4: What are the shortcomings in the current state of the 

affairs? 

o This research question is answered by studying and 

analyzing the studies found and suggesting future 

work. 

B. Search Strategy 

To support our study and to find answers to our research 

questions, we investigated several sources of information. 

Hence, we collected relevant studies from scientific literature 

sources only. To collect relevant studies, we focused our search 

in the following literature search engines and databases: Google 

Scholar, ACM, Science Direct, IEEE and Springer. Moreover, 

to be able to cover and collect more sources of interest we used 

both backward and forward snowballing techniques to collect 

related studies that were not found while searching in the search 

engines.  

Furthermore, we used the following search strings to collect 

the relevant studies: 

• In Google Scholar, IEEE, ACM, and Springer: 

("automated" OR "auto*") AND ("game" OR "video 

game") AND ("verify" OR "verification" OR "testing" 

OR "game testing" OR "test*" OR "playtest*" OR 

"playtesting") 
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• In Science Direct: (due to the limitations of the searching 

tool in Science Direct database, we modified the search 

string to be the following): 

("auto") AND ("video game") AND ("verify" OR 

"verification" OR "testing" OR "game testing" OR 

"test" OR "playtest" OR "playtesting") 

C. Study Selection and Quality Assessment 

The study selection went through several steps as follows: 

1) Initial selection: The searching process was done on each 

one of the mentioned databases in Section III-B. The first 

selection of the studies was based on the article of each 

study.  

2) Filtering studies: To find the most relevant studies from 

the initially collected ones, we applied our quality 

assessment criteria. Moreover, we went through the 

collected studies and filtered them based on the contents of 

their abstract, introduction and conclusion. 

3) Merging: After filtering the studies, we ended up with a 

pool of selected studies that are relevant to our research. 

However, some of them were duplicates due to the 

outcomes of databases and search engines. Thus, we 

merged and combined all the found studies under one set 

of studies with unique and no study duplications. 

4) Snowballing: To collect more related studies and to make 

sure that we covered all studies available, we ran  

backward and forward snowballing processes. Backward 

snowballing is the process of going through the references 

list of a study and identifying new papers to include from 

it [28]. On the other hand, forward snowballing refers to 

identifying and collecting new related papers based on the 

papers that are citing the examined paper [28]. The 

snowballing processes resulted into adding new papers that 

were not found during the first selection steps.  

5) Final Decision: After adding the new studies that were 

collected from the snowballing processes. We filtered our 

set of studies again to end up with the final set of studies of 

interest. 

 

The selection process was supported by quality assessment 

criteria with inclusion and exclusion rules as follows: 

1) Inclusion Criteria:  

a) Studies written in English 

b) Studies discussing automated video game verification, 

testing, or playtesting 

2) Exclusion Criteria: 

a) Studies talking about topics not related to game 

testing, such as procedural level generation agents 

b) Studies that are duplicates of other studies 

D. Data Extraction 

In order to have solid extracted data and to easily manage the 

extraction process, we established a well-structured comparison 

framework to help in finding answers to the research questions. 

Hence, for each research question there are certain attributes 

that the comparison framework studies. These attributes are 

categorized based on the research questions, and they are 

defined as follows: 

• RQ1:  

o Approach: This attribute focuses on the methods and 

approaches used in the proposed solutions in the 

related studies. An example of such approaches could 

be based on Deep learning, Reinforcement Learning, 

Genetic Algorithms, and several other approaches that 

are used in the literature. 

o Benefits: This attribute focuses on the benefits and the 

outcomes of each approach studied in the literature. 

o Limitations: This attribute presents the limitations 

and drawbacks (if found) of the studied approach. 

• RQ2:  

o Testing Goals: This attribute presents the goals of 

running automated tests on games, where there might 

be different goals for testing, such as, verifying the 

game’s functionalities, balancing the game, enhancing 

the level design, etc. 

• RQ3:  

o Targeted Games: This attribute studies the games 

that literature studies used and applied their 

approaches on. There are different types of games 

under variety of categories of genres [29]. 

o General Applicability: This attribute studies the 

applicability of the approaches to other games or 

software systems other than the ones they have been 

evaluated with. 

o Open Source: This attribute focuses on the 

availability of the developed approach’s code publicly 

as open-source project. 

 The analysis of the extracted information from the  

studies were discussed and visually illustrated in Section IV 

based on the research questions and their related comparison 

attributes . 

IV. RESULTS AND DISCUSSION 

In this section we present our findings and primary 

observations after studying and analyzing the found studies, and 

by answering the research questions. 

A. RQ1 - What automated game testing approaches are 

applied in the literature? 

Studies in the literature varied in the ways of implementing 

automated game testing approaches. To distinguish between the 

studied approaches, we categorized the studies based on the 

implemented algorithms and their common characteristics. 

These categories are search-based, goal-directed, human-like, 

scenario-based, and model-based. We will go into the details of 

the approaches in each category, in addition to discussing the 

benefits and limitations of each one of them. 

1) Search-Based Approaches 

Search-based approaches are those focusing on exploring 

and analyzing the state space of a game, with the goal of finding 

and reporting the availability of states that match or break 

predefined criteria. Several algorithms were used in the 

literature to apply search-based testing, where some  

studies utilized Evolutionary Algorithms such as Genetic  
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Algorithms [16, 30, 31, 32], while other studies used graph 

based algorithms such as Monte Carlo Search [33, 34], and A* 

[22, 35]. On the other hand, some studies employed Rapidly 

Exploring Random Tree Search [36, 37, 38]. 

• Evolutionary algorithms: [16, 30, 31, 32, 39] 

  Chan et al. (2004) [16] presented a Genetic 

Algorithms based approach to verify, find, and reach 

game states that designers did not expect to be existing 

while designing the game. In another study [30], Salge et 

al. (2008) developed a Genetic Algorithms agent that 

helped in verifying the game with its ability of detecting 

bugs and gameplay flaws. Furthermore, Tan et al. (2013) 

[32] used Genetic Algorithms with Artificial Neural 

Networks to understand the state space and to test the 

game levels. In another study, Garcia Sanchez et al. 

(2018) [31] approached automated playtesting using AI 

agent based on Evolutionary Algorithms and a new 

mutation operator. The developed approach assisted game 

designers to balance the game undertest. Zheng et al. 

(2019) [39] developed a testing agent called Wuji which 

uses Evolutionary Algorithms and multi-objective 

optimization to explore game space.   

  Despite the effectiveness of using Evolutionary 

Algorithms to search and explore game state spaces, the 

approach had some limitations, where it might be time 

consuming when it comes to identifying the best fitness 

function for the agent [16]. Moreover, Chan et al. [16] 

stated that using Evolutionary Algorithms depends on off-

line learning which could sometimes fail to cover all the 

sequences of the game. Thus, to overcome these 

problems, Salge et al. [30] used three AI paradigms which 

are Swarm AI, Councillor AI and Reactive AI to make the 

approach more useful and be able to reach more states. 

The authors of [39] utilized Reinforcement Learning to 

direct the agent while exploring the state space. Moreover, 

in [32], Tan et al. used Artificial Neural Networks to learn 

from the explored states. 

• Graph search: [33, 34, 22, 35, 40, 41, 42] 

  Shaker et al. (2013) [41] presented an approach that 

is based on Depth-First state space search using game 

simulations. The authors stated that they preferred using 

Depth-First search because they were interested in 

checking the playability of the levels instead of 

investigating all the solution space, where playability is a 

quality attribute [43] based on usability in the context of 

video games, gameplay or player interaction [44][45], 

with an objective of providing enjoyment and 

entertainment through credibility and satisfaction [46]. To 

enable sensible search procedure, the authors restricted 

the search by encoding core game rules’ components into 

a Prolog-based agent, using a set of reachable components 

to cover context information, and by defining a policy to 

get possible actions. One of the limitations mentioned by 

the authors is that the agent might accept generated levels 

that are unplayable, or sometimes accept generated 

playable levels that could contain some unnecessary or 

unused components.  

 In other studies, A* search algorithm was used to test 

games. Silva et al. (2018) [22] used A* based approach to 

find misbehaving events. Hoyt et al. (2019) [35] proposed 

two A* based approaches that can be used to assess the 

playability of game levels. The first is an A* Reachability 

Check agent, which determines the possibility of going 

from any two random points in a level [35]. The second is 

an A* based Survival Analysis agent, which gives an 

approximation about navigation difficulty in levels [35]. 

Although the A* approaches seem to be effective for 

searching through a state space, Silva et al. [22] stated that 

developing such approach comes with a price which is the 

need of tuning the heuristic function to fit the situation 

being tested. 

  On the other hand, Monte Carlo search algorithms 

were used by several studies. Keehl and Smith (2018) [33] 

presented game testing automation in Unity engine using 

a framework that is based on Monte Carlo Tree Search 

(MCTS). The framework consisted of four main parts: 

First, Jupyter notebook is used for running the 

experiments and visualizing the results. Second, a module 

that contains implementation of MCTS which is called 

python support. Third, a C# based module that is 

mandatory to any game project that uses this framework, 

which communicates with the python modules through a 

TCP protocol socket. Fourth, modifications to the game 

where it must determine legal moves at each step, request 

an index of a move to take, and apply actions. In another 

study [34], Zook et al. (2015) presented the utilization of 

MCTS to perform planning strategies to simulate player 

behavior with different skills, where MCTS helped in 

understanding the space of strategic options of player 

skills. Isaksen et al. (2015) [40] presented the use of 

survival analysis and Monte Carlo Simulation to develop 

an AI agent that allows the exploration of a subset of game 

variants with parameters changes. MCTS based agents 

bring several benefits. Isaksen et al. [40] showed that 

using Monte Carlo can help in enhancing the gameplay 

quality and the game’s playability by modifying  

game’s parameters such as number of obstacles, sizes  

and dimensions of game objects and scoring criteria. 

Moreover, Zook et al. [34] stated that the analysis of 

MCTS based agents could help in understanding and 

balancing gameplay and levels. Despite the various 

implementations and use cases of Monte Carlo based 

approaches, they still have some limitations as pointed out 

by several authors [33, 34, 40]. One of these limitations is 

that a Monte Carlo based agent can only look in single 

dimension of parameters. In addition to that, another 

limitation is related to the limited representation of the 

game state space [33] [34]. To avoid such limitations, 

Keehl and Smith [33] suggested using reinforcement 

learning algorithms to extract knowledge gained during 

MCTS rollouts. Moreover, Isaksen et al. [40] 

recommended looking into higher dimensions of 

parameters when using Monte Carlo based approaches to 

get better exploration results. 
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 In another side, Machado et al. (2018) [42] presented 

Cicero, an AI-assisted game design and debugging tool. 

The AI agents in this tool can playtest different types of 

games which are built on top of GVGAI. The agents of 

the tool use graph search algorithms such as, breadth-first, 

depth-first search, A* and, MCTS. Moreover, they can 

explore the state space of the games they play using 

predefined heuristics to find the best actions to take. 

However, the limitation of this tool is its subjectivity to 

GVGAI, where the authors stated that the tool is nowhere 

near having general-purpose game-playing agents that  

can work in other game engines or development 

environments. Furthermore, they mentioned that the tool 

still has open questions related to the lack of fast 

simulations. 

• Rapidly exploring random tree search: [36, 37, 38] 

 Zhan et al. (2018) [36] proposed a search approach 

based on Rapidly Exploring Random Tree (RRT), which 

works by growing a tree and capturing the reachability of 

points in the game’s state space from some initial state in 

the game, where the algorithm takes advantage of its 

ability of exploring continuous feature space. Moreover, 

the approach has the ability of understanding the relations 

between explored states. To allow progression during the 

exploration process, random goals are picked, and the 

algorithm tries to reach them by finding closest nodes to 

the goal and by picking and performing the best actions.  

 In another study, Chang et al. (2019) [37] presented 

an approach based on RRT called Reveal-More. The 

approach combines automatic exploration with few 

minutes of human gameplay, which results in a better 

game state coverage. The authors [37] stated that using 

this approach would lower the testers’ efforts in testing 

and finding all paths within a game.  

 Tremblay et al. (2014) [38] proposed a game testing 

approach that abstracts game state space into a high 

dimensional geometric space to support pathfinding. This 

approach used RRT to support design decisions by 

integrating it with Unity engine. 

 From the studied approaches, we can see that RRT 

has a great potential in exploring continuous state spaces. 

However, Chang et al.  [37] stated that RRT has a 

limitation of not picking the most useful actions. Thus, 

more studies that investigate the usefulness of the selected 

actions is required. 

2) Goal-Directed Approaches 

Goal-directed approaches aim at injecting the goals of an 

agent to its implementation through defining policies, rewards, 

and penalties, which guide the agent to explore the potential 

paths that lead to the desired goals and objectives. The found 

approaches varied in their implementation. Some studies used 

Reinforcement Learning [47, 48, 49, 50], while others used 

different algorithms with a defined policy that forces the search 

to be directed to a certain goal [51, 52, 53]. 

• Reinforcement learning: [47, 48, 49, 50] 

Pfau et al. (2017) [47] developed a system for 

intelligent completion of adventure riddles via 

Unsupervised Solving (ICARUS) which is based on 

discrete Reinforcement Learning in a dualistic fashion, 

with short-term and long-term memory, and built for 

Visionaire game engine. Moreover, the approach utilizes 

specialized heuristics that reduce the search space, in 

addition to the ability of using pre-defined situation-

dependent action choices to support the agent’s 

playthroughs. ICARUS is used to autonomously play, 

test, and report bugs in games.  

Napolitano (2020) [48] proposed using Deep 

Reinforcement Learning with a Dueling Deep Q-Network 

strategy, to gain efficient and performant results that 

allowed the agent to extract essential information from the 

game environment and take decisions on the next moves 

to support game balancing and design.  

Joakim et al. (2020) [49] used Deep Reinforcement 

Learning, to create a self-learning agent that can explore 

and exploit the game mechanics based on a user-defined 

reinforcing reward signal. The authors stated that using 

Reinforcement Learning agents is better suited to 

complement the testing environment. 

Shin et al. (2020) [50] presented applying 

Reinforcement Learning via strategic play learning. 

Moreover, the employed policy-based learning method 

that was used in the study is called actor-centric, which 

provides probabilistically strategic actions befitting 

randomly changing states via learning policies suitable to 

the state. This approach can be used to verify game design 

and level balancing. 

There were some limitations when applying 

reinforcement learning. Joakim et al. [49] mentioned that 

not all problems are better solved using Reinforcement 

Learning, where using more focused agents is better. 

Moreover, Pfau et al. [47] stated that according to their 

approach of implementing Reinforcement Learning, one 

of the limitations is the subjectivity towards a certain 

genre of games and a specific development environment. 

Shin et al. [50] mentioned that training such agents might 

be time consuming, and to overcome this limitation 

predefined strategic play is recommended. 

• Restricted heuristics: [51, 52, 53] 

De Mesentier Silva et al. (2017) [51] presented two 

agents with specialized heuristics, where the first agent 

approaches the game in a conservative manor, whereas 

the second plays aggressively and proactively. The 

authors have shown that their approaches were cheaper in 

terms of computational time and they outperformed A* 

and MCTS agents. In [52] (which is a continuation work 

of [50]) the authors developed other agents that were able 

to discover and identify faulty states in the game. 

Moreover, the authors stated that the new agents would 

help in saving cost and time in the early stages of 

development. The agents presented [51, 52] can be used 

for game analysis as stated by the authors. 

Jaffe et al. (2012) [53] developed a restricted-play 

framework, which is capable of measuring the game 

balance. Though, one of the limitations mentioned by the 
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authors [53] is that such approaches can only be utilized 

to test discrete games. In addition, agents based on 

restricted heuristics are subjective to the game being 

tested [51, 52]. 

3) Human-Like Approaches 

Human-like approaches are focused on imitating the human 

behavior, where agents are optimized to produce results similar 

to those obtained from humans. Such approaches are very 

useful when testing human centric features, such as emotions, 

curiosity, challenges, difficulty, aggressiveness and more. 

There were several studies found that implemented human-like 

agents, either through utilizing human data and learning 

algorithms, or by using specialized and restricted heuristics, or 

mixing between different algorithms. 

• Machine learning: [23, 54, 55, 20, 56, 57] 

A semi-automated gameplay analysis by Machine 

Learning using active learning approach was presented by 

Southey et al. (2005) [23, 54]. The approach uses player 

data to train the agent, and it was used to find flaws in the 

gameplay.  

Zook et al. (2014) [55] used an Active Learning 

approach with regression model that utilizes four 

acquisition functions for regression models which are 

variance, probability of improvement, expected 

improvement, and upper-confidence bounds. It was used 

to fix game controls.  

Gudmundsson et al. (2018) [20] used Deep Learning 

approach based on Convolutional Neural Networks to 

analyze game screens and to make decisions based on 

that. The authors stated in the study that in order to train 

human-like agents, training data was required. Thus, they 

collected those data from 1% of randomly selected players 

from the game in a duration of 2 weeks. The obtained 

dataset was nearly 1.2 * 107 samples. Then the dataset was 

split into 3 subsets used per level: training set with 4500 

samples, validation set with 500 samples and test set with 

500 samples. Their agent was used to check the 

playability of newly added levels. The approach was able 

to play and assess the design of the game, and it was 

giving better results than an MCTS-based agent.  

Borovikov et al. (2019) [56] presented two case 

studies of game playtesting using Machine Learning 

algorithms. In the first case study, the authors developed 

an agent that is composed of three main components 

which are, an Ensemble of Multi-resolution Markov 

models that capture the style of the teacher from the main 

game features perspective, a Deep Neural Networks 

component which was trained as a supervised model on 

samples bootstrapped from an agent playing the game 

following the Markov ensemble, and an interactivity 

component between the game designer and the agent 

where the game designer can take the controller from the 

agent allowing the agent to learn from the samples 

generated while the game designer is taking control. In the 

second case study, they utilized Reinforcement Learning 

to allow the agent to play in different styles like offensive 

or defensive. This approach can help in reducing the effort 

of developing such agents that act as game AI. 

Pfau et al. (2020) [57] applied an approach based on 

Deep Player Behavior Modeling (DPBM), that can be 

used to automate game balancing. Decisions and player 

models are created by DPBM through mapping 

preference distribution of actions to game states via 

machine learning and state-action architecture. The 

approach allows considering many playing styles, instead 

of reducing the decision-making strategies. 

Despite the various applications of Machine Learning 

in human-like agents, some limitations were mentioned in 

the literature. The availability of player data is the main 

and most common limitation, where the amount of player 

data could affect the performance of the agent [54, 55, 56, 

57]. Though, Borovikov et al. [56] stated that interactive 

sessions could solve such limitation. On the other hand, 

the space complexity of the game could affect the 

performance and the accuracy of the agent [54, 55], which 

can be mitigated by specifying and training agents based 

on data that is relevant to a specific situation [55]. 

• Restricted heuristics: [58, 59, 60, 61, 62] 

Devlin et al. (2016) [58] used MCTS based agent that 

imitates human behavior by using a biased policy that 

uses Bradley-Terry value and UCT scoring formula, in 

addition to the utilization of human data. The authors 

stated that the performance of the agent was competitive 

and efficient for discrete action games. The approach can 

be used to analyze and study game balancing. 

Ariyurek et al. (2019) [59] proposed a human-like 

based tester and a synthetic based agent which uses 

MCTS. The human-like agent uses human-like test goals 

that were extracted and trained from human tester data. 

On the other hand, the synthetic based agents were based 

on synthetic test goals that were created from game 

scenarios and represented using a graph-based approach 

where the agent rewarded all valid and some invalid 

transitions. The authors applied these test goals on agents 

based on state-action-reward-state-action and MCTS, and 

generated test sequences and validated the game behavior 

according to the game constraints automatically. The 

agent’s decision making procedure was based on user 

parameters that were supplied to the agent. The agent 

proposed in this study plays the goals sequentially through 

their feature vector. The sequence can then be checked for 

evaluation using a criteria threshold. Furthermore, inverse 

reinforcement learning was used in the study to capture 

and learn experiences and to automatically generate tests 

using human testers’ expertise. Moreover, the authors 

proposed a multiple greedy-policy inverse reinforcement 

learning to overcome the problem of complex human 

tester actions that are difficult to model. The study stated 

that it was easier to build an agent that targets a simple 

goal to play rather than a complex one. Moreover, it was 

better to verify one goal at a time when playing different 

levels, where skipping a feature might happen because of 

the level composition and execution order of the test steps 

that are important for the agents. The proposed approach 
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has some limitations, first, the approach is based on a 

greedy solution, which can be improved with dynamic 

programming [59]. However, according to the authors, 

using dynamic programming will increase the test goal 

creation time [59]. Another limitation is that the multiple 

greedy-policy inverse reinforcement learning agent 

generalizes the exploited sequences to all situations, 

which can cause problems when learning the behavior of 

the tester. Moreover, the agent may not fulfill a goal due 

to two reasons, the infeasibility of the goal, and a 

prevention caused by a bug. Thus, the authors stated that 

they allowed the agent to play the game for a specific 

number of steps. When the last step occurs, if the goal was 

not reached, then it may be unreasonable to let the agent 

target the next goal [59]. In 2020, Ariyurek et al. [60] 

proposed several modifications to their human-like agent 

presented in [59] to enhance bug finding. The proposed 

modifications were applied to the MCTS policy, where 

they tested different strategies such as using 

transpositions, tree reuse, knowledge-based evaluations, 

Boltzmann rollouts, MixMax, and Single-Player-MCTS. 

In another study, Mugrai et al. (2019) [61] proposed 

an agent based on MCTS and an evolving utility function 

to create different procedural personas and human 

playstyles, which allowed creating automated playtesting 

system. The player style developed in the study imitates a 

long-term human player who follows a strategy of 

optimizing number of points by maximizing them via a 

series of actions and after a specific number of moves. 

This approach can be used for game balancing.  

Stahlke et al. (2019) [62] developed a framework with 

expert systems and artificial intelligent agents that can 

perform simulated testing sessions. The goal of the agent 

is to behave like human players when navigating the game 

world by mimicking the player’s tendency to explore, 

wander, and becoming lost. The framework is built on top 

of Unity game engine. Moreover, the framework is able 

to log and record the agent’s exploration behavior for 

game design analysis. The authors stated that the 

framework could be limited because of the nature of 

expert systems. Though, using their approach does not 

require training data.  

Most of the discussed approaches that apply restricted 

strategies face difficulties in generalizing their solutions 

to other games [62].  

• Mixed algorithms: [63, 64, 65] 

MCTS along with Stratabots were used by Horn et al. 

(2018) [63] to improve state exploration and enhance the 

search speed of Stratabots, and to imitate human behavior 

while playing a game, in addition to studying the 

effectiveness of the game difficulty. Stratabots in the 

study were crafted to allow the agents to understand the 

scores and take and undo actions. Moreover, the authors 

mentioned that their Stratabots take greedy approaches to 

select actions that maximize the score. MCTS was 

introduced in the study to improve the creation of 

Stratabots and minimize the hand-crafted features, where 

performance can be considered a Stratabots’ limitation. 

Holmgård et al. (2018) [64] presented the use of 

procedural personas which are archetypal player models 

that are non-player characters provided with human-like 

personalities to automatically playtest game content. The 

developed procedural personas were based on MCTS and 

Evolutionary Computation algorithms to test and improve 

the game design and balance game’s difficulty. The 

limitations of this study are that the developed personas 

were inherently subjective where a utility function should 

be constructed by the game or the level designer to test the 

content of the game. The authors suggested using a 

technique that allows learning utility functions from 

demonstration such as using inverse reinforcement 

learning methods. 

In another aspect, Keehl and Smith (2019) [65] 

proposed an extension to their previous work [33] to allow 

using MCTS with Machine Learning to imitate human 

behavior and to improve the agent’s exploration. Using 

imitation learning in this approach allowed the agent to 

summarize a collection of gameplay samples into a 

reactive decision policy which could help game designers. 

One of the limitations mentioned is that in order for the 

agent to work effectively, it has to be testing deterministic 

games only. 

4) Scenario-Based Approaches 

We define scenario-based approaches as techniques 

and frameworks that run tests which are based on 

predefined human made sequences of actions, or human 

requested actions. Some approaches were found to record 

human sequences of actions and replay them [66, 67]. 

Other investigated studies performed sequences of actions 

automatically through game simulations [68, 69, 70]. 

While some others used semi-automatic approaches that 

work with the help of a human tester commanding the tool 

to debug the visuals of the game via predefined criteria 

using image processing [71, 72, 73]. 

• Record and Replay: [66, 67] 

Ostrowski and Samir (2013) [66] proposed a model 

that creates and executes regression tests within video 

games, where the approach utilizes record and playback 

mechanisms. The authors stated that the record and 

playback technique is easy to use and it requires minimal 

programming skills, which makes it easily used by game 

testers to create meaningful tests. The approach works by 

recording events’ steps which are compared later to a 

playback of the game to check for bugs and errors. 

Another benefit is that it can be generally applicable to 

any type of games as mentioned in the study, where they 

applied the approach to different genres of games. 

Though, generalization might not be feasible due to 

integration issues. 

In another study, Bécares et al. (2017) [67] presented 

a theoretical framework for beta testing games. The 

proposed approach provides two testing methods. The 

first is based on recording game sessions as input 

commands from keyboard or mouse that capture playing 
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through the whole game, and then reapply these 

commands to test the game again automatically. The 

second approach is based on recording the internal 

messages that are defined as high level actions and the 

timeframe context of these actions when the game is fully 

played. In addition to that, they proposed using petri nets 

to assess and support the testing process in this method, 

especially when the levels are updated and the input traces 

are not accurate. This approach supports compatibility 

and regression testing. However, one of the limitations of 

this approach is that there are some cases where this 

approach cannot work properly when levels are updated 

and playthrough recordings are not modified. On the other 

hand, the approach has AI behavior to allow 

harmonization between the traced messages (high level 

actions) and the created petri nets, to prevent agents 

getting stuck during replays. 

• Game simulation: [68, 69, 70] 

Jung et al. (2004) [68] purposed a Virtual Environment 

Network User Simulator (VENUS) system to perform 

automated beta tests. This approach supports game testers 

and reduces development resources. The authors stated 

that VENUS system supports generality and scalability, 

where VENUS virtual client engine can easily simulate 

any kind of online games. Moreover, the users of the 

system can make large number of simulations to test the 

game server’s capacity and to perform stress tests. One of 

the benefits mentioned in the study is the ability of storing 

internal game data from the game server to the database 

for analysis purposes. However, there are some 

limitations in this approach. One of them is that the 

system must be coupled with the game code to allow 

simulations and testing. This limits the generality of the 

approach. Thus, to apply the system on different games, 

major modifications need to be introduced to match with 

the targeted game for testing. 

Because of the limitations in VENUS [68], Cho et al. 

(2010) [69, 70] presented a newer version of the system 

called VENUS II that supports black box testing, to 

separate the tool from the game’s code. The new tool 

supports black box testing by passing the game’s grammar 

and virtual maps to the tool using Game Description 

Language format, to create a way of simulating the game 

through defined scenarios that virtual agents can perform 

automatically. 

• Visual debugging: [71, 72, 73] 

Nantes et al. (2008) [71] proposed a semi-automatic 

framework that applies Computer Vision technologies to 

support the testing team, which helps in improving and 

accelerating the testing process. The approach uses a 

combination of two algorithms, Harris corner as 

descriptor and Canny edge as detector. This combination 

allows identifying jagged edges and visual distortions 

within the game environment.  

In another study, Mozgovoy and Evgeny (2017) [72] 

proposed a semi-automated smoke tests framework. The 

goal of smoke tests is to perform system checkups. 

Automated user interface smoke tests should be able to 

access the system under test as any user and perform 

actions. However, the authors stated that when it comes to 

testing graphical elements and hand drawn user interfaces, 

some artistic changes might be implemented such as 

animations and changes of sprites and positions, which 

are difficult to interact with and test using traditional 

smoke testing frameworks. As a result, the authors 

proposed a framework that utilizes image processing and 

recognition algorithms with UI automation framework 

called Appium. The authors used OpenCV library and 

integrated it with Appium tests to recognize game objects 

and hand drawn UI elements in Unity game engine. The 

approach can perform test scenarios and use image 

recognition to analyze screen content. The presented 

approach can be used to check visual failures in the game 

under test. 

In a similar way, Tuovenen et al. (2019) [73] presented 

an approach called MAuto, which focuses on testing 

mobile video games. The tool records user-interactions 

and exports them for playback in Appium. MAuto 

integrates image recognition by using AKAZE features to 

recognize objects in the taken screenshots. When 

MAuto’s users perform recording, the tool creates test 

scripts to allow reproducing the recorded events. The 

application recognizes objects and UI controls which are 

stored as images during the recordings, and then it 

compares them to ground truth objects and images to 

identify errors.  

Computer Vision is useful when making decisions 

about objects and game visuals, where this evaluation 

process can be thought of as game environment 

inspection. However, such agents might not be able to 

capture the psychological part of the game, meaning 

entertainment inspection might not be feasible [71]. 

Moreover, image recognition-based testing agents might 

fail in recognizing errors [72] [73]. In addition, the image 

recognition process and the pixel comparison algorithms 

could be time consuming [72] [73]. Another limitation is 

that testing dynamic objects through recognition is hard 

to apply [73]. 

5) Model-Based Approaches 

 These approaches are based on abstracting the game’s 

workflow into formal representations and models, which allow 

verification of flow of events, data, logic, or control. Several 

approaches were found in the literature that used different types 

of modeling techniques. Some studies used petri nets [74, 75]. 

While some others used Unified Modeling Language (UML) 

[76, 77].  

• Petri nets: [74, 75] 

Yessad et al. (2014) [74] presented a formal 

framework that is based on petri nets to assist designers in 

modeling and automatically verifying games at design 

stage and before the implementation starts. The authors 

chose colored petri nets, which is one of the petri nets 

types [78], because these models give better specification 

by using colors to model data. Moreover, they used a 
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specific class of colored petri nets called symmetric nets 

with bags. The approach was integrated with Temporal 

Logic language to compare states and to verify errors 

using model checking and counter example mechanisms. 

Reuter et al. (2015) [75] adopted using petri nets to 

support the automated testing process of video games. 

The authors presented the use of colored petri nets to find 

and detect structural errors in a scene-based game. The 

colored petri nets models were automatically generated 

from the game engine that the approach was integrated 

with. The proposed approach was used to verify the game 

through applying reachability analysis, and it was able to 

detect livelocks and deadlocks. The limitation of this 

approach is that it depends on scene-based games and the 

engine it was integrated with. 

• Unified Modeling Language: [76, 77] 

Schaefer et al. (2013) [76] presented an automated 

testing framework called Crushinator that reduces the 

dependency upon beta testing. This framework was 

developed to provide a game-independent testing tool to 

verify event-driven client-server based game applications 

via automating multiple testing methods such as model 

based testing, load and performance testing, and 

exploratory testing. The model based procedure is applied 

by using behavior models of the system being tested, 

where a UML package within the tool is employed to 

extract UML state machine models from the game for 

testing purposes. The extracted models represent the 

behavior of the system under test, and the extracted paths 

from the models can be used to generate test cases. The 

authors stated that the tool can perform a complete 

coverage testing compared to other beta testing tools. 

Where coverage testing is defined as the process of 

identifying parts of the software that have not been 

exercised during testing, which guides the testing of 

important parts of the software and gives a clear checklist 

of test completeness [79]. The framework is easy to 

integrate with other games due to the nature of isolation 

and game independency. However, one of the limitations 

mentioned in the study is that due to the focus on event-

driven game servers, the framework might not be 

applicable nor beneficial for other systems and games. 

Iftikhar et al. (2015) [77] presented a model based 

testing approach using UML diagrams. Their approach 

automates three main steps of software testing which are 

test case generation, test oracle generation, and test case 

execution. The approach works by simulating the inputs 

required for playing games. The authors stated that the 

proposed approach was able to find and detect  

major faults. However, there were some limitations, 

where the authors stated that the users must have  

software engineering background to be able to  

understand the models. Moreover, the models must be 

created for each game before using the approach. The 

authors stated that this approach might not be able to 

cover all paths and variations of functionalities. 

 

• Game Description Language: [80] 

Haufe et al. (2012) [80] introduced a formal language 

to describe game-specific knowledge as state sequence 

invariants by following the semantics of Game 

Description Language. The proposed language uses 

Prolog-like inference mechanism to represent rules that 

allow players to make legal moves. Moreover, the 

approach allows automated verification of systems by 

checking state sequence invariants using Temporal Game 

Description Language extension, which supports 

checking local properties of games that can be proved by 

induction rather than by complete exhaustive search.  

• Linear Temporal Logic: [81] 

Varvaressos et al. (2014) [81] presented a framework 

that can perform runtime monitoring of games, which can 

greatly speed up the testing phase through detecting bugs 

automatically while games are being played. The 

framework uses logical specification language known as 

first order linear temporal logic LTL-FO+, where the 

usage of this specification language would make it 

possible to write and check safety and temporal properties 

in games.  

• ModelMMORPG: [82, 83] 

Schatten et al. (2017) [82, 83] used a game logic-

oriented approach that allows testing game quests and 

objectives, in addition to supporting load and stability 

testing. The tool depends on modeling the game logic 

using ModelMMORPG modeling language that allows 

modelling a wide range of various large-scale multi-agent 

systems scenarios. The model in the tool is translated into 

concrete implementation of agent classes facilitated 

through an agent-based platform called (Smart Python 

Agent Development Environment). A variation of game 

related tasks like walking around, fighting etc., are 

allowed to be performed by agents by establishing 

relationships between agents and low-level 

implementation of the game under test. 

 

In this study we reviewed and analyzed 51 studies and their 

proposed game testing approaches. The following figure  

(see Figure 1) presents the trends in the literature, where the 

figure depicts the number and category of each approach per 

year. 

B. RQ2 - What are the objectives of the automated game 

testing approaches available in the literature? 

From our analysis, we categorize the testing objectives of the 

studied game testing approaches as follows:  

1) Testing for functional correctness 

The goal of this testing objective is to ensure that the game 

is behaving as expected. To do so, games could be checked 

through verifying their functionalities, software code, the 

control flow of events, or the flow of data. This objective was 

implemented by several approaches, search-based 

approaches could check the availability of faulty states [16, 

30, 22, 36, 39], goal-directed approaches [47, 49, 52] and 

human-like approaches [54, 59, 60, 63] could be used in 
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triggering invalid states and executing incorrect events, 

scenario-based approaches would give some insights on 

broken software code [66, 67, 69, 70, 73], and model-based 

approaches can proof-check the reachability of deadlocks, 

livelocks, or invalid states [75, 77, 80, 81, 82]. 

2) Testing for multiplayer stability 

This testing objective aims at multiplayer games and 

testing the networking stability and capacity. The approaches 

that implemented this objective were using massive number 

of agents to check the network performance, stability, and the 

ability of handling huge capacity of active players sending 

commands and events through the network. This objective 

was targeted by some of the approaches, like, scenario-based 

approaches through running multiple simulation agents at the 

same time [69, 70], and model-based approaches by checking 

concurrent events and mimicking the flow of data and events 

in multiplayer games [82, 83]. 

3) Testing for performance 

Testing games’ performance is the goal of implementing 

this testing objective. This testing objective was applied by 

one study only, which implemented a goal-directed 

approach. Pfau et al. [47] stated that their agent can record 

performance metrics such as (FPS, RAM, CPU usage) at 

certain time, and these metrics can be continuously tracked 

over the game iteration life time resulting into the ability of 

recognizing performance problems and their causes. 

4) Testing for visual correctness 

The goal of this testing objective is to verify games’ 

visuals, such as shaders, game UI, 3D models and 

animations, etc. [6]. Scenario-based studies that focused on 

visual debugging tackled this objective by implementing 

image recognition algorithms and analyzing pixels 

differences [71, 72, 73]. 

5) Testing for game design correctness 

This testing objective is meant to test various aspects that 

affect the user experience, and which are related to the 

gameplay and its rules. The correctness of the created game 

environment and the placement of its objects is one of these 

aspects. Incorrectly placed game objects might affect the user 

experience and the playability of a game, where some bugs 

could be introduced because of that, such as stuck spots, and 

world holes [6]. Another aspect is imprecise and 

inappropriate game rules and constraints that are part of the 

game designers’ job to create. Thus, testing such aspects is 

crucial to maintain a better user experience. This objective 

was targeted by several approaches, search-based approaches 

could help in exploring states that violate game rules [30, 22, 

35, 39, 40, 41, 42], goal-directed approaches [47, 49, 50, 51] 

and human-like [20, 57, 64, 65] could help in getting some 

insights related to agents and players getting lost, stuck 

within game levels or getting distracted by other elements in 

the game rather than the game’s objective, and scenario-

based approaches that help in getting insights and analysis on 

how changes of level would affect the game winning 

scenarios [67]. 

6) Testing for game balance and fairness 

This testing objective focuses on verifying the fairness of 

the game and the balance of game’s parameters. Search-

based approaches could check the availability of states that 

affected choosing certain paths repeatedly in the decision 

graphs because of game parameters [31, 32, 33, 34, 39, 42], 

goal-directed approaches could help in checking the 

variations of actions taken and their effects in winning or 

losing games [48, 50, 51, 52, 53], and human-like approaches 

could help in checking game fairness by checking the 

winning conditions or checking game parameters that 

motivated agents’ to take similar actions because of their 

advantage [54, 55, 20, 56, 57, 58, 61, 64, 65]. 

7) Testing for progression and learnability 

The goal of this objective is to verify that the player is 

going to be able to learn the game, progress through levels, 

and complete the game. Some approaches implemented this 

objective in their agents, for instance, search-based [37] and 

goal-directed [48] approaches could help in checking the 

ability of finishing a game. Moreover, human-like 

approaches could help in studying and analyzing players’ 

psychological behaviors in learning and discovering game 

areas [56, 61, 62]. 

8) Testing for physical correctness 

This objective aims at verifying the state of physical 

properties in the game world. These properties could be 

related to collisions, frictions, gravity, etc. Only one study 

was found to target this testing objective, where a  

goal-directed approach by Joakim et al. [49] utilized 

Reinforcement Learning to check collision properties and the 

ability of going through walls or getting stuck in defined 

stuck points. 
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The following figure (see Figure 2) shows analysis of the 

testing approaches and the associated testing objectives. 

 

C. RQ3 - How do researchers validate their developed 

automated game testing approaches? 

Several games were used to validate the testing approaches. 

The results and analysis depicted in Figure 3 show that Tile-

matching games were the most used to test human-like 

approaches. Moreover, search-based approaches were tested on 

more variations compared to other approaches. Nevertheless, 

most of the approaches presented were not generally applicable, 

where most of the studies applied their testing approach to one 

genre. However, Zheng et al. [39] argued that the 

implementation of their search-based approach could be 

generally applicable to different types and genres of games. 

Moreover, to support the validation of some of the approaches, 

some authors shared the source code of their approaches 

publicly to allow other researchers to improve, extend, and 

learn from their work. Keehl et al. open sourced both of their 

search-based [33] and human-like [65] approaches Monster-

Carlo [84] and Monster-Carlo 2 [85]. Furthermore, Schatten et 

al. [82, 83] publicly shared their implementation of their model-

based approach [86]. Also, Varvaressos et al. [81] open sourced 

their model-based solution [87]. 

 

D. RQ4-What are the shortcomings in the current state of the 

affairs? 

After studying and analyzing the found playtesting 

techniques, this question is answered with the analysis 

outcomes discussed in Section IV, and the implications of the 

study in Section V. (Table I. summarizes our findings). 

V. IMPLICATIONS OF THE STUDY 

The results and observations in Section IV reveal that there 

are still gaps and open issues that have not been addressed in 

the literature. We discuss such gaps and open issues, and 

suggest future work, in the sequel. 

A. Game testing approaches and testing objectives 

• We presented automated game testing categories in 

Section IV based on the studied approaches. However, 

more categories could be added. For example, 

collaborative approaches were not discussed in the 

literature. Thus, it might be a new area of research to 

show how multi-agents with their stand-alone 

behaviors can interact and collaborate to test a game. 

Collaborative testing would support verifying 

different testing goals, such as, multiplayer stability, 

performance, functional correctness, game design 

correctness, etc. 

• Another interesting field that requires more research is 

using computer vision and image processing methods 

to check and verify testing goals other than visual 

correctness. 

• Model-based approaches were used to mainly test 

functional correctness of games. However, they could 

also be used to check game design and game balancing 

issues, which are missing in the literature. 

• We observe that model-based approaches in the 

literature were mostly applied without looking at the 

software, meaning, the verification checks were 

directly applied to models without any communication 

with the code and the game environment. Thus, we 

suggest that a future work could consider 
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implementing testing techniques for creating models 

from code to show flow of events similar to that in the 

code. Moreover, future research might also consider 

connecting models with agents that are interacting 

with the game environment, to observe more 

information and to allow different types of testing 

goals.  

• Several implementations of the scenario-based 

approaches were lacking the adaptation to 

environmental changes in the game, those 

implementations were either based on recorded 

playthroughs or known sequences of actions. Thus, we 

recommend that future work in this field shall consider 

researching techniques that can inform and adapt 

predefined scenarios to work with the newly added 

environmental changes. 

• Another area that could be researched in the scenario-

based approaches is the development of counter-

example scenarios and checking whether these 

scenarios can be reached or not. This approach would 

help in checking the correctness of both game’s 

functionality and design. 

• All the studied testing approaches were used to show 

faults or to give insights related to the game. However, 

none of them were used to verify and recommend 

changes. Thus, we observe that new research direction 

could be implementing a recommendation system that 

can check the game design and recommend changes to 

enhance game experiences. 

• Building playtesting agents that use automated online 

learning and parameter tuning techniques that are 

based on self-learning and self-playing without the 

need of prior human knowledge or previously 

available data samples. This would help in solving the 

limitations related to requiring training data, 

parameters tuning, and interactive sessions applied to 

the agents. 

• Human-like agents were proven to be working by 

several of the recent studies. These approaches were 

used to test different objectives. However, using these 

human-like agents with the injected human data to 

analyze psychological aspects such as enjoyment, 

excitement, feeling fear and being bored, were not yet 

studied. 

• Several testing objectives were found to be targeted by 

the literature approaches. However, none of the studies 

aimed at audio correctness testing objective.  

• Studies that implemented visual debugging 

approaches focused on static elements on screen. 

Hence, we observe that more studies are needed for 

checking dynamic visual elements such as visual 

effects, animations, and particle systems. 

• Most of the search-based approaches were exploring 

game states to check invalid states. However, none of 

the studies looked at deadlocks, livelocks, or 

conflicting and overlapping valid states where two or 

more valid states are occurring at the same time, but 

they should not be. 

• The literature lacks automated testing approaches that 

verify procedurally generated content in games. 

• With the increasing interest in virtual reality and 

augmented reality games [88] [89], we observe that 

one of the research areas that needs to be explored is 

to automatically test games developed with such 

technologies. 

B. Game testing general applicability 

• Building a general game testing agent that is not biased 

towards a certain game genre or game development 

environment. 

• From Figure 3, we can see that some game genres were 

tested by some approaches and not by others. 

Moreover, some game genres were not tested, such as 

fighting games or first-person shooting games. Thus, 

more applications of automated game testing to 

different game genres is suggested. 

• Most of the tested game genres had small state space 

complexity, which might not be challenging. It would 

be more beneficial if future research focuses on testing 

games with practical complexity and state space.  

• Due to the lack of publicly available relevant artifacts, 

we suggested that open source projects/data should be 

encouraged in future works to support studies and 

advancements in the field. 

VI. THREATS TO VALIDITY 

As any survey study, the validity of the findings of this 

research faces some threats. We cannot ensure that we have 

studied all available approaches; there might be other 

approaches either in the literature or in the industry that we were 

not able to reach. We mitigated this by considering studies from 

most prominent literature databases specifically (Google 

Scholar, IEEE, ACM, Springer, Science Direct) using the same 

search string. Moreover, to ensure that we collected adequate 

studies, we utilized both forward and backward snowballing. 

 In this study we categorized automated game testing 

approaches studied from the literature, in addition to 

categorizing game testing objectives. However, the 

categorization and classification procedure was a creative, 

research and development process. Thus, the own subjective 

nature of creativity imposes an external validity risk. 

The observations concluded from our study were based on 

using our developed comparison framework and its attribute list 

presented in Section III-D. These attributes were used to 

compare between found approaches in literature and to extract 

answers to the research questions. The comparison framework 

and its attribute list were developed to cover the important 

characteristics of automated game testing approaches. 

However, additional attributes may be introduced by other 

researchers to further study and analyze automated game testing 

approaches.  
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VII. CONCLUSION 

In this study we investigated automated game testing 

approaches in the literature. We developed a framework based 

on a set of attributes identified as a result of an extensive survey 

of existing approaches. Accordingly, we answered our research 

questions using our assessment framework discussed. We 

analyzed approaches available in the literature against our 

framework. We classified and compared the approaches 

accordingly.  

Our findings have shown that there is still a gap and future 

work required in this field. Moreover, we believe that 

automated game testing can improve the game development life 

cycle by finding errors, enhancing the gameplay and reporting 

game analysis in less time and effort supporting game designers 

and developers and improving their productivity. 
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Approach Implementations Testing Objectives Game Genres 

Search-Based 

• Evolutionary Algorithms: [16, 30, 31, 32, 39] 

• Graph search: 

     • Depth first: [41] 

     • A*: [22, 35] 

     • MCTS: [33, 34, 40] 

     • Cicero: [42] 

• RRT: [36, 37, 38] 

• Functional correctness 

• Game design correctness 

• Game balance and fairness 

• Progression and learnability 

Sports, Turn-based, Cards, Arcade, Simulation, Tile-

matching, MMORPG, Puzzle, Platform, Tower defense, 

Stealth, GVGAI 

Goal-Directed 
• Reinforcement learning: [47, 48, 49, 50] 

• Restricted heuristics: [51, 52, 53] 

• Functional correctness 

• Game design correctness 

• Game balance and fairness 

• Progression and learnability 

• Physics correctness 

• Performance 

Scene-based, Board, Tile-matching, Educational 

Human-Like 

• Machine learning: [54, 55, 20, 56, 57] 

• Restricted heuristics: [58, 59, 60, 61, 62] 

• Mixed algorithms:  

     • MCTS and Stratabots: [63] 

     • MCTS and Evolutionary Algorithms: [64] 

     • MCTS and Machine Learning: [65] 

• Functional correctness 

• Game design correctness 

• Game balance and fairness 

• Progression and learnability 

Sports, Shoot 'em up, Tile-matching, Sandbox, Puzzle, 

GVGAI, Cards, Adventure 

Scenario-Based 
• Record and Replay: [66, 67] 

• Game simulation: [68, 69, 70] 

• Visual debugging: [71, 72, 73] 

• Functional correctness 

• Game design correctness 

• Visual correctness 

• Multiplayer stability 

Adventure, MMORPG, Sports, Arcade 

Model-Based 

• Petri nets: [74, 75] 

• Unified Modeling Language: [76, 77] 

• Game Description Language: [80] 

• Linear Temporal Logic: [81] 

• ModelMMORPG: [82, 83] 

• Functional correctness 

• Multiplayer stability 

 

Educational, Platform, Scene-based, MMORPG, Puzzle  

TABLE I 
SUMMARY OF THE STUDY FINDINGS 
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