
feature

0 7 4 0 - 7 4 5 9 / 0 0 / $ 1 0 . 0 0 © 2 0 0 1 I E E E J a n u a r y / F e b r u a r y 2 0 0 1 I E E E S O F T W A R E 81

ultimate system quality. Implementing the
function test as a formal process lets testers
cope better with the functional complexity
of the software application under test. Test-
plan documents and test-case specifications
are important deliverables from the formal
test process.2

For complex systems, test cases are criti-
cal for effective testing. However, the mere
fact that testers use test-case specifications
does not guarantee that systems are suffi-
ciently tested. Numerous other factors also
determine whether testers have performed
well and whether testing was effective.

Ultimately, testers can only evaluate
complete testing effectiveness when a sys-
tem is in production. However, if this eval-
uation finds that a system was insufficiently
tested or that the test cases were ineffective,
it is too late to benefit the present project.
To reduce such a risk, the project team can
assess testing effectiveness by performing
in-process evaluation of test-case effective-
ness. This way, they can identify problems

and correct the testing process before re-
leasing the system.

This article describes a technique for in-
process validation and improvement of test-
case effectiveness. It is based on a new metric
and an associated improvement framework.
These work together to improve system qual-
ity before its release into production.

Evaluation =
verification + validation

The evaluation process certifies that a
product fits its intended use. For software
project deliverables in general, and test cases
in particular, evaluation commonly consists
of verification and validation tasks.3

Verification
To start, a project team must first verify

test-case specifications at the end of the test-
design phase. Verifying test cases before test
execution is important; it lets the team assess
the conformance of test-case specifications to
their respective requirements. However, such

Validating and Improving
Test-Case Effectiveness

Yuri Chernak, Valley Forge Consulting

Effective
software testing
before release
is crucial for
product success.
Based on a new
metric and an
associated
methodology for
in-process
validation of
test-case
effectiveness,
the author
presents an
approach to
improving the
software testing
process.

M
anagers of critical software projects must focus on reducing the
risk of releasing systems whose quality is unacceptable to
users. Software testing helps application developers manage
this risk by finding and removing software defects prior to re-

lease. Formal test methodology defines various test types, including the
function test.1 By focusing on a system’s functionality and looking for as
many defects as possible, this test bears most direct responsibility for

software testing

Authorized licensed use limited to: University of London: Online Library. Downloaded on July 06,2022 at 13:26:24 UTC from IEEE Xplore. Restrictions apply.

conformance does not mean that the test
cases will automatically be effective in find-
ing defects. Other factors also determine
whether test cases will be effective in the test
cycle. These include design of test cases using
incomplete or outdated functional specifica-
tions, poor test-design logic, and misunder-
standing of test specifications by testers.

Verification activities commonly used in-
clude reviews or inspections and traceability
analysis. Reviews or inspections let us evaluate
test-case specifications for their correctness
and completeness, compliance with conven-
tions, templates, or standards, and so forth.
Traceability matrices or trees, on the other
hand, let testers trace from the functional spec-
ifications to the corresponding test-case speci-
fications, which ensures that all functional re-
quirements are covered by the given test cases.

Nevertheless, test cases that passed verifi-
cation could have weak failure-detecting
ability and, therefore, should be required to
pass validation as well.

Validation
Validation can proceed as soon as testers

have executed all test cases, which is at the
end of the test process’s test-execution
phase. As its main objective, test-suite vali-
dation determines whether the test cases
were sufficiently effective in finding defects.

If a test suite was effective, the system un-
der test will likely be of high quality and
users will be satisfied with the released prod-
uct. But, if a test suite was not effective, there
is a high risk that the system was not suffi-
ciently tested. In such cases, the users will
likely be dissatisfied with the system’s quality.

If test-case effectiveness has not proved
satisfactory, it is not too late to analyze the
reasons and correct the test process. Using
the proposed improvement framework,
testers can revise and improve the test suite,
and then execute the tests again. This, in
turn, can help them find additional defects
and thus deliver a better software product.

The test-case effectiveness metric
To perform validation objectively, testers

need a metric to measure the effectiveness of
test cases. When testing online mainframe
systems, and especially client–server systems,
a certain number of defects are always found
as a side effect. By side effect, I mean the sit-
uation where testers find defects by executing

some steps or conditions that are not written
into a test-case specification. This can hap-
pen either accidentally or, more frequently,
when the tester gets an idea on the fly.

When defining a metric for test-case ef-
fectiveness, we can assume that the more de-
fects test cases find, the more effective they
are. But, if test cases find only a small num-
ber of defects, their value is questionable.
Based on this logic, I propose a simple test-
case effectiveness metric, which is defined as
the ratio of defects found by test cases (Ntc)
to the total number of defects (Ntot) reported
during the function test cycle:

TCE = Ntc / Ntot ∗ 100%

More precisely, Ntot is the sum of defects found
by test cases and defects found as a side effect.

The proposed TCE metric might resemble
Jones’ defect removal efficiency metric,4

which is defined as the ratio of defects found
prior to production to the total number of
reported defects. The important distinction
is that DRE has the purpose of evaluating
user satisfaction with the entire test process.
It measures the test-process effectiveness and
reflects a production or users’ perspective on
the test process. In contrast, my TCE metric
serves specifically to validate the effective-
ness of functional test cases. Unlike DRE,
the TCE metric evaluates test cases from the
test-cycle perspective, which provides in-
process feedback to the project team on how
well a test suite has worked for testers.

As I’ve discussed, validation serves pri-
marily to determine whether a test suite was
sufficiently effective in the test cycle. We can
conclude this by comparing the actual TCE
value, calculated for the given test cycle,
with a baseline value. The project team
selects the latter in advance, possibly ob-
taining it by analyzing previous successful
projects that are considered appropriate as
models for current and future projects. My
experience with successful client-server
projects delivering business applications
suggests 75 perecent to be an acceptable
baseline value. However, the goal for test-
case effectiveness can be different for vari-
ous application categories, such as commer-
cial, military, or business applications.

When the TCE value is at the baseline
level or above, we can conclude that the test
cases have been sufficiently effective in a test

8 2 I E E E S O F T W A R E J a n u a r y / F e b r u a r y 2 0 0 1

Validation
serves

primarily to
determine

whether a test
suite was

sufficiently
effective in the

test cycle.

Authorized licensed use limited to: University of London: Online Library. Downloaded on July 06,2022 at 13:26:24 UTC from IEEE Xplore. Restrictions apply.

cycle. In this case, the project team can an-
ticipate user satisfaction with the system in
production. But, the further the TCE value
falls below the baseline level, the higher is
the risk of user dissatisfaction. In such cases,
the project team can correct the test process
based on the framework, as I’ll describe.

Improving test-case effectiveness
If in-process validation finds test-case ef-

fectiveness to be less than acceptable, the
project team should analyze the causes and
identify areas for test process improvement.

My proposed improvement framework
stems from the defect-prevention concept
developed at IBM.5 The IBM approach im-
proves the test process on the basis of causal
analysis of defects, so-called test escapes,
that were missed in testing. Test escapes are
“product defects that a particular test failed
to find, but which were found in a later test,
or by a customer [in production].”

I further evolve IBM’s concept and suggest
that the analysis of defects missed by test cases
can help us improve test-case effectiveness.
Hence, my improvement framework is based
on test-case escapes, defined as software de-
fects that a given suite of test cases failed to find
but that were found as a side effect in the same
test cycle. Once they are found by chance, we
can view test-case escapes as a manifestation of
deficiencies in the formal test process. There-
fore, their causal analysis can help us identify
areas for test process improvement.

In brief, the proposed improvement
framework consists of the following steps:
1. Understand and document the test

process used by the project team.
2. Make assumptions about the factors af-

fecting test-case effectiveness.
3. Gather defect data and perform causal

analysis of test-case escapes.
4. Identify the main factors.
5. Implement corrective actions.

Following these steps, either a revised
part or the entire test suite (as I’ll discuss
later) should be executed again. As a result,
testers should find additional defects that
justify the improvement effort. Below I dis-
cuss each of the five steps in detail.

Clearly, my approach relies entirely on the
analysis of defects missed by test cases. Con-
sequently, it requires that a sufficient number
of such defects be available. This fact can
limit the applicability of the approach for

some projects, for example, in the testing of
mainframe batch systems. Here, testers gen-
erally exercise only preplanned conditions,
and the number of defects found as a side ef-
fect is usually very low in the test cycle. But,
for client–server projects that implement for-
mal testing, the share of such defects could be
from 20 to 50%, which provides a valuable
source of information for test-suite valida-
tion and test-process improvement.

Let’s look at the five steps.

Step 1. Understand, document the test process
When a project team uses written test-case

specifications and focuses on their evaluation
and improvement, this already indicates that
a certain test process has been established
and followed. The test process should be
planned at the beginning of the software
project and documented in a test plan. Com-
monly, testers define the test process in terms
of the following phases: test planning, test
design, test preparation and execution, and
test evaluation and improvement.6–8 Each
phase should be planned and defined in
terms of tasks and deliverables. For example,
we can define the test process as follows:
■ Test planning. In this phase, the main

tasks are the definition of the scope, ob-
jectives, and approach to testing. The
main deliverable is a test-plan document.

■ Test design. This involves the design of
test cases, with the main deliverables be-
ing the test-case specifications.

■ Test preparation and execution. In this
phase, preparation of the test environ-
ment, executing test cases, and finding
defects are the necessary tasks, and the
main deliverables are defect reports.

■ Test evaluation and improvement. Here,
the main task is analyzing the results of
testing and the main deliverable is a test
summary report.

In all phases, except the last, there are a
number of factors that determine the effec-
tiveness of functional test cases in a given
project. Hence, the following steps of my
improvement framework focus on identify-
ing and evaluating these factors.

Step 2. Make assumptions
Once it understands and documents the

test process, the project team should analyze
each phase and identify factors that can af-
fect test-case effectiveness.

J a n u a r y / F e b r u a r y 2 0 0 1 I E E E S O F T W A R E 83

Clearly, my
approach relies
entirely on the

analysis of
defects missed
by test cases.

Consequently, it
requires that a

sufficient
number of such

defects be
available.

Authorized licensed use limited to: University of London: Online Library. Downloaded on July 06,2022 at 13:26:24 UTC from IEEE Xplore. Restrictions apply.

Test planning. The main deliverable of the test-
planning phase is a test-plan document that,
among other things, defines the scope and ob-
jectives of testing. We can define test objectives
as features to be tested2 that, in turn, should be
traced to functional specifications. If the func-
tional specifications do not completely define
functional features, the test-plan document will
not be complete either. Hence, the test cases
will not completely cover a system’s function-
ality, thereby reducing their effectiveness.

Test design. When writing a test-case speci-
fication, we usually begin by understanding
and analyzing the corresponding business
rule that is the object of the test. Then, we
consider the test logic required for testing
this functional feature. To identify necessary
test cases, we can use test design techniques
such as decision tables, equivalence parti-
tioning, boundary analysis, and so forth.1,7,8

The test-design phase can give rise to other
factors that affect test-case effectiveness.
First, the test suite might be incomplete and
some of the business rules in the functional
specifications might not be covered by test
cases. Second, test-design logic could be in-
complete and some of the necessary test
conditions could be missing in test-case
specifications. A common example of this
situation is a lack of negative test cases. By
definition, a test case is negative if it exer-
cises abnormal conditions by using either
invalid data input or the wrong user action.
Finally, a third factor is that the test-case
specifications could simply be incorrect. For
example, a source document—a correspon-
ding functional specification—could be in-
correct or unclear, or there might be an er-
ror in the test-case specification itself.

All the deficiencies identified in the test-
planning and test-design phases will ultimately
require addition of new and revision of exist-
ing test-case specifications and their retesting.

Test preparation and execution. The test-
execution phase itself can be a source of fac-
tors that reduce test-case effectiveness. For ex-
ample, some test cases might not be executed

or might be executed incorrectly. In addi-
tion, a tester might overlook defects, espe-
cially when the verification of expected re-
sults is not straightforward. Based on our
experience, only a small number of test-case
escapes stem from test-execution factors.
Therefore, these factors will probably not
be central to the test-case effectiveness im-
provement effort. However, further analysis
at Step 4 might show that the proportion of
defects in this category is significant. In such
cases, a detailed evaluation of test-execution
factors should be performed.

Figure 1 shows these factors in the form of
a cause–effect diagram. I have grouped the
factors according to the test-process phases
in which they originate. However, at this
point, they are just assumptions that should
be evaluated using the following steps to
identify the factors that are mostly responsi-
ble for insufficient test-case effectiveness.

Step 3. Gather defect data and perform
causal analysis

To perform causal analysis of test-case
escapes at the end of the test-execution
phase, testers must select the defects missed
by test cases. This requires the use of a de-
fect-tracking system. Also, the testers must
identify which defects were found as a result
of test-case execution and which were found
as a side effect—that is, as test-case escapes.
Once identified and selected, the test-case
escapes should be classified according to
one of the factors based on the causal analy-
sis logic shown in Figure 2.

This analysis is used to evaluate each
test-case escape and understand why the test
suite missed the corresponding defect dur-
ing test execution. We can begin causal
analysis by verifying that a functional spec-
ification has a business rule related to the
given defect. If it does not, we have deter-
mined that the cause of this test-case escape
is an incomplete functional specification.
However, if it does, we need to check
whether the test suite has a test specification
that should have found this test-case escape.

If a test-case specification does not exist,
this means that the test suite does not cover
all business rules. Therefore, an incomplete
test suite is the reason this defect was
missed. If a test specification does exist, we
need to check the defect against test cases in
the specification. If none of them were de-

8 4 I E E E S O F T W A R E J a n u a r y / F e b r u a r y 2 0 0 1

Incorrect test
specifications

Test-design phase factors

Test-execution
phase factors

Test-planning
phase factors

Incomplete
test design

Incomplete
test suite

Test-case effectiveness

Test
execution
problems

Incorrect
functional

specifications

Incomplete
functional

specifications

Figure 1. Factors
affecting test-case
effectiveness.

Authorized licensed use limited to: University of London: Online Library. Downloaded on July 06,2022 at 13:26:24 UTC from IEEE Xplore. Restrictions apply.

signed to catch such a defect, this indicates
that the test specification is incomplete. In-
deed, all test inputs and expected results in
the test-case specification might be correct.
However, the specification might include,
for example, only positive test cases.

A lack of negative test cases in test specifi-
cations is a common cause of missed defects.
This is a case of deficiency in test design that
was used to derive test cases. Hence, we can
specify that the cause of such test-case escapes
is incomplete test design. But, if the test spec-
ification includes conditions related to a given
defect, we need to verify that these test condi-

tions and the corresponding expected results
are correct. If they are correct, we should con-
clude that test-execution problems are the
likely reason that the defect was missed.

If the test conditions or expected results
were not correct, we need to understand
why the test specification is incorrect. First,
we should check the source document and
see if the corresponding business rule is also
incorrect. If this is the case, we should clas-
sify the cause of this test-case escape as an
incorrect functional specification. Other-
wise, the cause is incorrect test specification.

As a result of defect causal analysis, all

J a n u a r y / F e b r u a r y 2 0 0 1 I E E E S O F T W A R E 85

This project was a banking application intended for external
clients—financial institutions. The system had a three-tier
client–server architecture with a Windows NT front-end developed
in Visual Basic and Visual C++. The second tier was implemented
in a Unix environment with Oracle 7 as a database engine. The
third tier was a data feed from a mainframe COBOL/DB2 system.
The project team consisted of 10 developers and three testers.

Because the application was intended for external clients, soft-
ware quality was of great importance to project management. To
ensure high quality, the project team implemented a formal test
process with a focus on functional testing. The development team
was responsible for functional specifications, and the test team was
responsible for the test-plan document and test-case specifications.
Management defined the functional testing exit criteria as follows:
■ 100% of test cases are executed.
■ No defects of high and medium severity remain open.
■ Test-case effectiveness not less than 75%.

By the end of the test-execution phase, testers had executed all
test specifications and reported 183 defects. Defects were man-
aged using the PVCS-based defect tracking system. In reporting de-
fects, testers classified them either as test-case escapes or as being
found by conditions in test-case specifications. Testers reported 71
test-case escapes and 112 defects found by test cases. Based on
these numbers, the calculated TCE metric value was 61%, which
was considerably lower than the acceptable level of 75%. As a re-
sult, the project team concluded that functional testing did not pass
the exit criteria and the system was likely not sufficiently tested.
Hence, test-process correction and system retesting were needed.

The project team performed the test process improvement ac-
cording to the framework described above. First, they analyzed all
test-case escapes and classified them by appropriate causes.
Next, they built a distribution of causes (see Figure A). Analysis of
the distribution showed incomplete test design and incomplete
functional specifications to be the main factors causing missed de-
fects by test cases. To improve the test process, the project team
began by correcting and completing the functional specifications
and reviewing them with the users. A subsequent review of test-
case specifications showed that the main deficiency of the test de-
sign was a lack of negative test cases. Therefore, the existing test-
case specifications were completed with negative test cases.
By definition, negative test cases focus on abnormal workflow

and are intended to break a system. However, the test
suite initially used by the testers was not sufficiently “de-
structive.” A significant number of defects were found as
side effects as opposed to being found by conditions in
test specifications. In addition, the team created a number
of new test-case specifications to completely cover the
business rules in the revised functional specifications. To
verify test suite completeness, this time the project team
used a traceability matrix, which was not done in the first
test cycle. Test suite incompleteness was one of the factors
that reduced test-case effectiveness (see Figure A).

After these corrections, the testers executed the revised part of
the test suite. As a result, they found 48 additional defects that oth-
erwise would have been released into production. At this point, the
number of defects found during the test cycles had grown to 231.
After two months in production, the rate of defects, reported by
users, had noticeably declined. By the end of the second month the
number of production defects was 23. The DRE metric calculated at
this time was 91%, which is 231/(231+23) = 0.91, and indicated
sufficient effectiveness of the test process.4 Indeed, none of the de-
fects reported from production by the users were of critical severity,
and the users were fairly satisfied with the system quality.

35
30
25
20
15
10

5
0

Inc
om

ple
te

tes
t d

es
ign

Inc
om

ple
te

fun
cti

on
al

sp
ec

ific
ati

on
s

Inc
om

ple
te

tes
t s

uit
e

Inc
orr

ec
t fu

nc
tio

na
l s

pe
cif

ica
tio

ns

Inc
orr

ec
t te

st-
ca

se
 sp

ec
ific

ati
on

s

Te
st

ex
ec

uti
on

 pr
ob

lem
s

Description of causes

Nu
m

be
r o

f t
es

t-c
as

e
es

ca
pe

s

Figure A. A Pareto chart.

Case Study

Authorized licensed use limited to: University of London: Online Library. Downloaded on July 06,2022 at 13:26:24 UTC from IEEE Xplore. Restrictions apply.

test-case escapes should be classified ac-
cording to one of the possible causes pre-
sented in Figure 1.

Step 4. Identify the main factors
At this point, all test-case escapes have

been classified according to their respective
causes. We now need to identify those “vital
few” factors that are responsible for the ma-
jority of the defects being missed by test cases.

For this, we can build a Pareto chart,9

which displays frequency bars in descending
order, convenient for analyzing types of
problems. Once identified, the most impor-
tant causes will be the focus of the next
step—implementation of corrective actions.

Step 5. Implement corrective actions
After identification of the main causes of

test-case escapes, the project team should
implement corrective actions and repeat the
test execution cycle. For the factors shown
in Figure 1, corrective actions could be any
of the following:
■ Incomplete or incorrect functional spec-

ifications—inspect and rework func-
tional specifications, then rework test-
case specifications.

■ Incomplete test suite—use a traceability
matrix to ensure complete coverage of
business rules by test cases.

■ Incomplete test design—implement
training of testers on test-design tech-
niques; use checklists or templates to de-
sign test-case specifications; rework test-
case specifications.

■ Incorrect test-case specifications—inspect
and rework test-case specifications.

■ Test-execution problems—implement
training of testers on test execution, de-
velop and use procedures for test execu-
tion and verification of test results.

When functional specifications or test cases
must be corrected, the project team should
revise the test suite and execute the revised
part again. However, if correction is required
only due to the test-execution problems, the
same test can be used for retesting. The main
objective of retesting is to find additional
defects. If additional ones are found, this
fact can justify the whole improvement effort.

The “Case Study” box illustrates how my
proposed approach to test-case effectiveness
validation and in-process improvement was
implemented in a client–server project.

T his technique for in-process valida-
tion of test cases is intended to give
project teams better visibility into

test-process effectiveness before their sys-
tems are released into production. The pro-
posed technique can be applied within any
project management model, including incre-
mental or evolutionary models, where it can
be used for assessment of test-process effec-
tiveness and its tuning from one incremental
build to another.

A project team has to decide in advance
what level of test-case effectiveness is ac-
ceptable for their project. Such a require-
ment can vary depending primarily on the
project’s criticality. Future work will focus
on developing a formal approach to select-
ing a baseline value for the TCE metric.

Acknowledgments
I am grateful to Vladimir Ivanov for his help in

preparing this material. I thank Richard Reithner for
editing the article. Finally, I am grateful to the IEEE
Software reviewers for their helpful feedback and
comments.

References
1. G. Myers, The Art of Software Testing, John Wiley & Sons,

Upper Saddle River, N.J., 1979.
2. IEEE Std. 829-1983, Software Test Documentation, IEEE,

Piscataway, N.J., 1983.
3. IEEE Std. 1012-1986, IEEE Standard for Software Verifica-

tion and Validation Plans, IEEE, Piscataway, N.J., 1986.
4. C. Jones, Applied Software Measurement, McGraw-Hill,

New York, 1991.
5. R. Mays et al., “Experiences with Defect Prevention,” IBM

Systems J., vol. 29, no. 1, 1990, pp. 4–32.
6. Y. Chernak, “Approach to the Function Test Decomposition and

Management,” Proc. 15 Pacific Northwest Software Quality
Conf., PNSQC/Pacific Agenda, Portland, 1997, pp. 400–418.

7. E. Kit Longman, Software Testing in the Real World, Addi-
son-Wesley, Reading, Mass., 1995.

8. P. Goglia, Testing Client–server Applications, QED Publish-
ing Group, Wellesley, Mass., 1993.

9. L.J. Arthur, Improving Software Quality, John Wiley &
Sons, Upper Saddle River, N.J., 1993.

8 6 I E E E S O F T W A R E J a n u a r y / F e b r u a r y 2 0 0 1

About the Author
Yuri Chernak is president and

founder of
Valley Forge
Consulting,
Inc., a consult-
ing firm that
specializes in
the field of
software qual-
ity assurance

and systems testing. He has over 20
years of experience in the software indus-
try. As a consultant, he has worked for
various clients, primarily for the broker-
age firms in New York. He has a PhD in
computer science and is a member of the
IEEE. His research interests cover systems
test methodology, software metrics, and
process improvement. He has been a
speaker at international conferences on
software quality. Contact him at
ychernak@idt.net.

Incomplete
test suite

Incomplete
functional

specification

Does a
test specification

exist?

Does a
business rule

exist?

Test-case escape

No

Yes

No

Yes

No
Incomplete
test design

Incorrect
functional

specification

Test
execution
problems

Incorrect
test

specification

Yes

Yes

Yes

No

Is the
test specification

complete?

Is the
test specification

correct?

Is the business
rule correct?

No

Figure 2. Test-case
escape classification
logic.

Authorized licensed use limited to: University of London: Online Library. Downloaded on July 06,2022 at 13:26:24 UTC from IEEE Xplore. Restrictions apply.

