
2 2 I E E E S O F T W A R E J a n u a r y / F e b r u a r y 2 0 0 1 0 7 4 0 - 7 4 5 9 / 0 0 / $ 1 0 . 0 0 © 2 0 0 1 I E E E

Contrary to what some might think, us-
ability is not just the appearance of the user
interface (UI). Usability relates to how the
system interacts with the user, and it includes
five basic attributes: learnability, efficiency,
user retention over time, error rate, and sat-
isfaction. Here, we present the general us-
ability process for building a system with the
desired level of usability. This process, which
most usability practitioners apply with slight
variation, is structured around a design-
evaluate-redesign cycle. Practitioners initiate
the process by analyzing the targeted users
and the tasks those users will perform.

Clarifying usability concepts
According to ISO 9241, Part 11, usability

is “the extent to which a product can be used
by specified users to achieve specified goals
with effectiveness, efficiency, and satisfaction
in a specified context of use.”2 This definition
ties a system’s usability to specific conditions,
needs, and users—it requires establishing cer-
tain levels of usability based on the five basic
attributes.

Usability engineering defines the target us-
ability level in advance and ensures that the
software developed reaches that level. The
term was coined to reflect the engineering ap-
proach some usability specialists take.3 It is
“a process through which usability character-
istics are specified, quantitatively and early in
the development process, and measured
throughout the process.”4 Usability is an is-
sue we can approach from multiple view-
points, which is why many different disci-
plines, such as psychology, computer science,
and sociology, are trying to tackle it. Unfor-
tunately, this results in a lack of standard ter-
minology. In fact, the term usability engineer-
ing is not universally accepted—other terms
used include usage-centered design, contex-
tual design, participatory design, and goal-
directed design. All these philosophies adhere
to some extent to the core issue of usability
engineering: evaluating usability with real
users from the first stages of development.

Usability attributes
We can’t define usability as a specific as-

focus
Usability Basics for
Software Developers

Xavier Ferré and Natalia Juristo, Universidad Politécnica de Madrid

Helmut Windl, Siemens AG, Germany

Larry Constantine, Constantine & Lockwood

This tutorial
examines the
relationship
between usability
and the user
interface and
discusses how
the usability
process follows a
design-evaluate-
redesign
cycle. It also
discusses some
management
issues an
organization
must face when
applying usability
techniques.

I
n recent years, software system usability has made some interesting ad-
vances, with more and more organizations starting to take usability seri-
ously.1 Unfortunately, the average developer has not adopted these new
concepts, so the usability level of software products has not improved.

usability engineering

Authorized licensed use limited to: University of London: Online Library. Downloaded on July 07,2022 at 15:34:10 UTC from IEEE Xplore. Restrictions apply.

pect of a system. It differs depending on the
intended use of the system under develop-
ment. For example, a museum kiosk must run
a software system that requires minimum
training, as the majority of users will use it
just once in their lifetime. Some aspects of us-
ability—such as efficiency (the number of
tasks per hour)—are irrelevant for this kind
of system, but ease of learning is critical.
However, a bank cashier’s system would re-
quire training and would need to be highly ef-
ficient to help reduce customer queuing time.

Because usability is too abstract a term to
study directly, it is usually divided into the
attributes we mentioned at the beginning of
the article:5

■ Learnability: How easy it is to learn the
main system functionality and gain pro-
ficiency to complete the job. We usually
assess this by measuring the time a user
spends working with the system before
that user can complete certain tasks in
the time it would take an expert to com-
plete the same tasks. This attribute is
very important for novice users.

■ Efficiency: The number of tasks per unit
of time that the user can perform using
the system. We look for the maximum
speed of user task performance. The
higher system usability is, the faster the
user can perform the task and complete
the job.

■ User retention over time: It is critical for
intermittent users to be able to use the
system without having to climb the learn-
ing curve again. This attribute reflects
how well the user remembers how the
system works after a period of nonusage.

■ Error rate: This attribute contributes neg-
atively to usability. It does not refer to sys-
tem errors. On the contrary, it addresses
the number of errors the user makes while
performing a task. Good usability implies
a low error rate. Errors reduce efficiency
and user satisfaction, and they can be
seen as a failure to communicate to the
user the right way of doing things.

■ Satisfaction: This shows a user’s subjec-
tive impression of the system.

One problem concerning usability is that
these attributes sometimes conflict. For ex-
ample, learnability and efficiency usually in-
fluence each other negatively. A system must

be carefully designed if it requires both high
learnability and high efficiency—for exam-
ple, using accelerators (a combination of keys
to perform a frequent task) usually solves this
conflict. The point is that a system’s usability
is not merely the sum of these attributes’ val-
ues; it is defined as reaching a certain level for
each attribute.

We can further divide these attributes to
precisely address the aspects of usability in
which we are most interested. For example,
performance in normal use and advanced
feature usage are both subattributes of effi-
ciency, and first impression is a subattribute
of satisfaction. Therefore, when analyzing a
particular system’s usability, we decompose
the most important usability attributes
down to the right detail level.

Usability is not only concerned with soft-
ware interaction. It is also concerned with
help features, user documentation, and in-
stallation instructions.

Usability and the user interface
We distinguish between the visible part of

the UI (buttons, pull-down menus, check-
boxes, background color, and so forth) and
the interaction part of the system to under-
stand the depth and scope of a system’s us-
ability. (By interaction, we mean the coordi-
nation of the information exchange between
the user and the system.) It’s important to
carefully consider the interaction not just
when designing the visible part of the UI, but
also when designing the rest of the system.

For example, if a system must provide
continuous feedback to the user, the devel-
opers need to consider this when designing
the time-consuming system operations.
They should design the system so it can fre-
quently send information to the UI to keep
the user informed about the operation’s cur-
rent status. The system could display this in-
formation as a percentage-completed bar, as
in some software installation programs.

Unfortunately, it is not unusual to find de-
velopment teams that think they can design
the system and then have the “usability team”
make it usable by designing a nice set of con-
trols, adding the right color combination, and
using the right font. This approach is clearly
wrong. Developers must consider user inter-
action from the beginning of the development
process. Their understanding of the interac-
tion will affect the final product’s usability.

J a n u a r y / F e b r u a r y 2 0 0 1 I E E E S O F T W A R E 23

It’s important
to carefully
consider the
interaction

not just when
designing
the visible
part of the

user interface,
but also when
designing the

rest of the
system.

Authorized licensed use limited to: University of London: Online Library. Downloaded on July 07,2022 at 15:34:10 UTC from IEEE Xplore. Restrictions apply.

Usability in software development
The main reason for applying usability

techniques when developing a software sys-
tem is to increase user efficiency and satis-
faction and, consequently, productivity. Us-
ability techniques, therefore, can help any
software system reach its goal by helping the
users perform their tasks. Furthermore, good
usability is gaining importance in a world in
which users are less computer literate and
can’t afford to spend a long time learning
how a system works. Usability is critical for
user system acceptance: If users don’t think
the system will help them perform their tasks,
they are less likely to accept it. It’s possible
they won’t use the system at all or will use it
inefficiently after deployment. If we don’t
properly support the user task, we are not
meeting user needs and are missing the main
objective of building a software system.

For a software development organization
operating in a competitive market, failure to
address usability can lead to a loss of market
share should a competitor release a product
with higher usability. Also, a software prod-
uct with better usability will result in re-
duced support costs (in terms of hotlines,
customer support service, and so forth).

Even if a system is being used, it does not
necessarily mean it has a high level of us-
ability. There are other aspects of a software
product that condition its usage, such as
price, possibility of choice, or previous
training. In addition, because users are still
more intelligent than computers, it is usu-
ally the human who adapts to the computer
in human–computer interaction. However,
we shouldn’t force the user to adapt to soft-
ware with poor usability, because this adap-
tation can negatively influence efficiency, ef-
fectiveness, and satisfaction. Usability is a
key aspect of a software product’s success.

The usability process
As we mentioned, a system’s usability de-

pends on the interaction design. Therefore,
we must deal with system usability through-
out the entire development process. Usabil-
ity testing alone is not enough to output a
highly usable product, because usability test-
ing uncovers but does not fix design prob-
lems. Furthermore, usability testing has been
viewed as similar to other types of software
quality assurance testing, so developers of-
ten apply the techniques late in the develop-

ment cycle—when major usability problems
are very costly, if not impossible, to fix.
Therefore, it is crucial to evaluate all results
during the product development process,
which ultimately leads to an iterative devel-
opment process. A pure waterfall approach
to software development makes introducing
usability techniques fairly impossible.

All software applications are tools that
help users accomplish certain tasks. However,
before we can build usable software tools—
or, rather, design a UI—we need information
about the people who will use the tool:

■ Who are the system users?
■ What will they need to accomplish?
■ What will they need from the system to

accomplish this?
■ How should the system supply what

they need?

The usability process helps user interac-
tion designers answer these questions dur-
ing the analysis phase and supports the de-
sign in the design phase (see Figure 1).

There are many usability methods—all
essentially based on the same usability
process—so we have abstracted a generic us-
ability process from the different approaches
to usability mentioned earlier. We hope this
makes it easier for the reader to understand
the different usability techniques we will be
describing.

Usability analysis phase
First, we have to get to know the users and

their needs, expectations, interests, behav-
iors, and responsibilities, all of which charac-
terize their relationship with the system.

User analysis. There are numerous ap-
proaches for gathering information about
users, depending on each individual system
under development and the effort or time
constraints for this phase. The main meth-
ods are site visits, focus groups, surveys,
and derived data.

The primary source for user information
is site visits. Developers observe the users in
their working environment, using the sys-
tem to be replaced or performing their tasks
manually if there is no existing tool. In ad-
dition, developers interview the users to un-
derstand their motivation and the strategy
behind their actions. A well-known method

Usability testing
alone is not
enough to

output a highly
usable product,

because it
uncovers but
does not fix

design
problems.

2 4 I E E E S O F T W A R E J a n u a r y / F e b r u a r y 2 0 0 1

Authorized licensed use limited to: University of London: Online Library. Downloaded on July 07,2022 at 15:34:10 UTC from IEEE Xplore. Restrictions apply.

for doing user analysis jointly with task
analysis is contextual inquiry.6 This method
provides a structured way for gathering and
organizing information.

A focus group is an organized discussion
with a selected group of users. The goal is to
gather information about their views and
experiences concerning a topic. It is well
suited for getting several viewpoints about
the same topic—for example, if there is a
particular software product to discuss—and
gaining insight into people’s understanding
of everyday system use.

In a survey, the quality of the information
depends on the quality of the questions.
Surveys are a one-way source, because it is
often difficult or even impossible to check
back with the user. Don A. Dillman’s book
Mail and Internet Surveys provides a struc-
tured method for planning, designing, and
conducting surveys.7

Derived data includes hotline reports,
customer complaint letters, and so forth.
It can be a good source of usability impli-
cations but is often difficult to interpret.
The most important limitation is that such
sources are one-sided. They report only
problems and say nothing about the features
that users liked or that enabled efficient use.

The most important thing about user
analysis is to record, structure, and organize
the findings.

Task analysis. Task analysis describes a set
of techniques people use to get things done.8

The concept of a task is analogous to the
concept of a use case in object-oriented soft-
ware development; a task is an activity
meaningful to the user. User analysis is
taken as input for task analysis, and both
are sometimes performed jointly.

We analyze tasks because we can use the
located tasks to drive and test UI design
throughout the product development cycle.
Focusing on a small set of tasks helps ra-
tionalize the development effort. Therefore,
we suggest prioritizing the set of tasks by

importance and frequency to get a small
task set. This approach guarantees that
you’ll build the most important functionali-
ties into the system and that the product
will not suffer from “featuritis.” These tasks
should be the starting point for developing
the system. One approach to analysis is to
build a task model within the Usage-
Centered Design method, a model-driven
approach for designing highly usable soft-
ware applications, where tasks, described as
essential use cases, are the basis for a well-
structured process and drive UI design.9

Task analysis ends when we evaluate the
discovered task set, which is best done collab-
oratively with users. When the user popula-
tion is already performing a set of tasks, we
perform task analysis during user analysis to
apprehend the tasks the user performs rou-
tinely and how the user perceives these tasks.
After the optional first analysis, we identify
the tasks our system will support, based on a
study of the goals the user wants to attain.
Then, we break the tasks into subtasks and
into particular actions that the user will per-
form and take the identified tasks as the basis
for building the usability specifications. We
then instantiate them to real-world examples
and present them to test participants in a us-
ability test.

Usability benchmarks. We set usability bench-
marks as quantitative usability goals, which
are defined before system design begins.10

They are based on the five basic usability at-
tributes or their subattributes.

We need these benchmarks because, if we
want to assess the value of the usability at-
tributes for the system under development,
we need to have a set of operationally de-
fined usability benchmarks.

We establish usability benchmarks by
defining a set of benchmarks for each usabil-
ity attribute we want to evaluate—that is, for
each usability attribute we consider impor-
tant for our system. We must define the
benchmarks in a way that makes them calcu-

J a n u a r y / F e b r u a r y 2 0 0 1 I E E E S O F T W A R E 25

User
analysis

Task
analysis

Usability
benchmarks

Conceptual
design

Visual
design

Evaluation

Analysis phase Design phase

Evaluation Evaluation

Figure 1. The
usability process.

Authorized licensed use limited to: University of London: Online Library. Downloaded on July 07,2022 at 15:34:10 UTC from IEEE Xplore. Restrictions apply.

lable in a usability test or through a user sat-
isfaction questionnaire. Table 1 shows the
format of a usability specification table. (The
“Observed results” column is filled with the
data gathered during the usability tests.)

We take task analysis as an input for this
activity, because most usability benchmarks
are linked to a task specified in task analysis.

Usability design
Once we have analyzed the tasks our sys-

tem will support, we can make a first at-
tempt at the UI’s conceptual design, which
we will evaluate and possibly improve in the
next iteration.

Conceptual design. During the conceptual
design phase, we define the basic user–sys-
tem interaction and the objects in the UI
and the contexts in which interaction takes
place. The findings of the user and task
analysis are the basis for the conceptual de-
sign. The deliverables from this phase are
typically paper prototypes, such as pencil
drawings or screen mockups, and a specifi-
cation, which describes the UI’s behavior.

Conceptual design is the most crucial
phase in the process, because it defines the
foundation for the entire system. Unfortu-
nately, design is a very creative process, and
it can’t be automated with a method. There is
a set of design principles and rules that we
must creatively adapt for a certain design
problem. (A good reading for any designer—
not just software designers—is The Design of
Everyday Things,11 which presents general
design principles by evaluating the design of
everyday objects.)

The main principles of UI design cover
feedback, reuse, simplicity, structure, toler-
ance, and visibility in UIs. Knowing usabil-
ity design principles is the basis for good de-
sign. Compare this to an adult drawing
class. Not everyone will be Picasso by the
end of the course, but the students will be

able to paint reasonable pictures if they use
the principles they learned. Another way to
improve design ability is to examine UIs.
Analyzing the UIs of every software appli-
cation you can access is very helpful and can
sometimes be a source of inspiration for
finding innovative, alternative solutions.

The conceptual design phase also ends
with evaluating the results. It is a good idea to
test the paper prototypes against the defined
task set to check that all the prioritized tasks
can be enacted. The last test in this phase is
run together with users as a usability test or
usability inspection of the paper prototype.

Visual design. Having completed the concep-
tual design, the final step in our process is vi-
sual design, where we define the UI’s appear-
ance. This covers all details, including the
layout of screens and dialog boxes, use of
colors and widgets, and design of graphics
and icons. There are also rules and principles
for visual design, addressing use of color,
text, screen layout, widget use, icon design,
and so forth. It pays to have a professional
screen designer, especially in this phase. Rec-
ommended readings about visual and con-
ceptual design are About Face12 and Soft-
ware for Use,9 which both include numerous
design tips. Designing Visual Interfaces fo-
cuses on screen design and graphics design in
the context of UIs, as well as the underlying
principles of visual design.13

The deliverables of this phase are proto-
types that must be tested, an exact specifi-
cation of the UI appearance, and behavior
plus the specification for new widgets that
must be developed.

Prototyping
Prototypes are not exclusive to UI design,

but they are valuable for performing usabil-
ity testing in early development phases. We
need to build prototypes because abstract
technical specifications are not a good way of

2 6 I E E E S O F T W A R E J a n u a r y / F e b r u a r y 2 0 0 1

Table 1
A Sample Usability Specification Table4

Usability Measuring Worst acceptable Best possible Observed
attribute instrument Value to be measured Current level level Planned target level level results

Performance “Answer Length of time taken 2 min, 53 sec 2 min, 53 sec 1 min, 30 sec 50 sec
in normal use request” task to successfully perform

the task (minutes and
seconds)

First Questionnaire Average score — 0 1 2
impression (range –2 to 2)

Authorized licensed use limited to: University of London: Online Library. Downloaded on July 07,2022 at 15:34:10 UTC from IEEE Xplore. Restrictions apply.

communicating when we want to involve
users in the design process—users understand
tangible system prototypes much better.5

Some prototyping techniques help perform
usability testing and require little implemen-
tation effort. We create prototypes to test
them on the user through usability evaluation
techniques. The prototyping techniques with
which software developers usually are not fa-
miliar include

■ Paper mock-ups: At the beginning of the
design process, the designer creates pa-
per prototypes—usually pencil drawings
or printouts of screen designs—for the
user. The designer will act as the com-
puter, showing the user the next element
when a transition between graphical el-
ements occurs.8

■ “Wizard of Oz” technique:8 A human
expert acts as the system and answers
the user’s requests, without the user’s
knowledge. The user interacts normally
with the screen, but instead of using soft-
ware, a developer sits at another com-
puter (network-connected to the user’s
computer) answering the queries. The user
gets the impression of working with a
real software system, and this method is
cheaper than implementing a real soft-
ware prototype.

■ Scenarios, storyboards, and snapshots:
A scenario describes a fictional story of a
user interacting with the system in a par-
ticular situation; snapshots are visual
images that capture the interaction oc-
curring in a scenario; and storyboards8

are sequences of snapshots that focus on
the main actions in a possible situation.
They make the design team think about
the appropriateness of the design for a
real context of use, and they help make
the process user-centric.

Usability evaluation
Usability evaluation is a central activity

in the usability process. It can determine the
current version’s usability level and whether
the design works.

Usability testing. The term usability testing
describes the activity of performing usability
tests in a laboratory with a group of users
and recording the results for further analy-
sis. We can’t predict a software system’s us-

ability without testing it with real users.
First, we must decide which groups of

users we want to use to test the system and
how many from each group we will try to
recruit as test participants. Then, we must
design the test tasks we’ll ask the partici-
pants to perform. We usually take them
from the results of the task analysis activity
and apply them to hypothetical real-life sit-
uations. Some characteristics of the test re-
quire consideration, such as

■ whether the participant can ask the
evaluator for help;

■ should two participants jointly perform
each test task to observe the remarks
they exchange in the process;

■ what information participants will receive
about the system prior to the test; and

■ whether to include a period of free sys-
tem access after completing the prede-
fined tasks to get the user’s overall im-
pression of the system.

After we prepare the test and recruit test
participants, we run the tests, optionally
recording them with video cameras or audio
recorders, and log the users’ actions in the
system for further analysis (also optional).
Once we have performed all the tests, we
analyze the data and gather results to apply
them in the next iterative cycle.

Thinking aloud. Formative evaluation seeks
to learn which detailed aspects of the inter-
action are good and how to improve the in-
teraction design.5 This opposes summative
evaluation, which is performed at the end of
the development process, after the system
has been built. The results of summative
evaluation do not help shape the product.

Thinking aloud helps perform formative
evaluation in usability tests. We ask the test
participant to think aloud while using the
system in a usability test,8 to verbalize his or
her actions so we can collect the remarks.
For example, a participant might say, “First,
I open the file, and I click once on the file
icon. Nothing happens. I don’t know why
this is not working like the Web. I press the
Enter key, and it opens. Now I want to
change the color of the label, so I search in
the Tools menu, but I can’t find any option
for what I want to do.” User remarks ob-
tained in usability tests can provide signifi-

J a n u a r y / F e b r u a r y 2 0 0 1 I E E E S O F T W A R E 27

We can’t predict
a software
system’s
usability

without testing
it with real

users.

Authorized licensed use limited to: University of London: Online Library. Downloaded on July 07,2022 at 15:34:10 UTC from IEEE Xplore. Restrictions apply.

cant insight into the best way of designing
the system interaction. By detailing their
mental process, test participants can un-
cover hidden usability problems.

Formative evaluation is the usual form of
evaluation in a usability process, combining
qualitative data gathered from user com-
ments with quantitative data to check against
previously defined usability benchmarks.

Heuristic evaluation. A usability expert can
perform a heuristic evaluation of the system
to make some development iterations
shorter and to perform more iterations in the
development process. The expert will make
a critique founded on both his or her inter-
action design experience and on generally
accepted usability guidelines, like the ones
by Ben Shneiderman14 and Jakob Nielsen.5

Experts provide a different kind of feed-
back than final users through usability test-
ing. Expert suggestions for modification are

usually more applicable, and they are more
precise about the underlying usability prob-
lems, such as a lack of consistency or poor
navigation. On the other hand, usability
testing must be performed with real users to
identify specific usability problems. Heuris-
tic evaluation can complement but not re-
place usability testing.

Collaborative usability inspection. A collabo-
rative usability inspection is a systematic ex-
amination of a finished system, design or
prototype from the end user’s viewpoint.9 A
team of developers, end users, application
or domain experts, and usability specialists
collaboratively perform the review. Collab-
orative usability inspections (CUIs) use fea-
tures and techniques from heuristic evalua-
tion, pluralistic usability walkthroughs, and
expert evaluations and are less expensive
and faster than usability testing. Behind this
technique is a set of strict rules to avoid the
problems that typically arise if end users dis-
cuss their work together with designers or
developers. CUIs uncover more—albeit dif-
ferent—usability defects (up to 100 defects
per hour) than usability testing.

Apart from efficiency, one advantage is
that people with multiple perspectives and
expertise examine the test object. Another
advantage is that the participating develop-
ers build skills and know-how about how to
make software more usable.

Management and organizational
issues

When introducing usability, an organiza-
tion must first commit management to the
ideas behind the usability process and con-
vince them of its benefits.4,5 The newest
concepts they need to accept include creat-
ing conceptual design in the first stages of
development and evaluating usability
throughout the development process. Cost-
Justifying Usability presents cost-benefit ar-
guments in favor of performing usability
practices, which can be used when trying to
get management commitment.15 Another
option to convince management is to take a
recently developed system or one that is cur-
rently being developed and to perform
videotaped usability tests with a few users
who are novel to the system. Showing the
results to management and the development
team can produce a change of attitude to-

2 8 I E E E S O F T W A R E J a n u a r y / F e b r u a r y 2 0 0 1

The following are books about human–computer interaction (HCI) and
usability that are more likely to interest software practitioners with little or no
knowledge about the field (the information for each book is in the Refer-
ences section of this article).

B. Shneiderman, Designing the User Interface: Strategies for Effective Hu-
man–Computer Interaction—This book summarizes all aspects related to
interactive systems from a serious scientific viewpoint, although some
readers might prefer a more engineering-focused approach. It includes a
valuable set of guidelines for designing the user interface. There have
been some interesting additions in the third edition about issues such as
hypermedia and the Web and Computer Supported Cooperative Work.

D. Hix and H.R. Haertsen, Developing User Interfaces: Ensuring Usability
Through Product and Process—Despite its title, this book is not just about
the user interface; it focuses on the process of user interaction design. Writ-
ten in a very practical style, it provides a hands-on approach to designing
the interactive part of a software system. Software practitioners might want
to skip the chapters devoted to the User Action Notation—a technique for
representing interaction designs—which is too formal for non-HCI experts.

L.L. Constantine and L.A.D. Lockwood, Software for Use: A Practical Guide
to the Models and Methods of Usage-Centered Design—The most recent of
the books reviewed here, it presents a process for designing usable soft-
ware systems based on one of the current trends in software engineering:
use cases. The book is written in a practical style that is likely to appeal to
software practitioners.

J. Nielsen, Usability Engineering—This book provides a good introduc-
tion to the issue of usability engineering. It is easy to read and includes
stories of real situations. It deals with a wide variety of issues related to
usability engineering—but none are addressed in depth.

Further Reading

Authorized licensed use limited to: University of London: Online Library. Downloaded on July 07,2022 at 15:34:10 UTC from IEEE Xplore. Restrictions apply.

ward usability testing, as the results will
probably show that the system is not as
good in usability terms as expected.

Integrating UI designers into the develop-
ment team isn’t always easy, especially if
they are assigned to several projects at
the same time. One approach to applying
usability techniques in some projects is
to promote one member of each develop-
ment team to usability champion,5 similar to
process improvement champions. Usability
champions learn the basic usability skills
and are coordinated by a user interaction
designer. The user interaction designer then
acts as a consultant in several projects but
can interact with the usability champion in
each group.4

Don’t try to do a full-scale usability process
from the beginning. You can start by setting
a small set of usability specifications with a
simple task analysis of the most prominent
tasks, some conceptual design with paper
prototypes and simple usability tests to be
carried out with a small set of users. You
can also act as usability expert performing
heuristic evaluation on the system using the
guidelines we mentioned (by Shneiderman14

and Nielsen5). Starting with modest objec-
tives will contribute more firmly to the final
success of your endeavor.

D espite increasing usability awareness
in software development organiza-
tions, applying usability techniques

in software development is not easy. Soft-
ware engineers and usability engineers have
a different conception of software develop-
ment, and conflicts can arise between them
due to differences in terminology and pro-
cedures. To create acceptable usability con-
cepts, the software engineering community
must integrate usability techniques into a
software engineering process that is recog-
nizable from both fields. Use cases offer a
good starting point, as they are the software
engineering construct closer to a usable soft-
ware development approach.

References
1. L. Trenner and J. Bawa, The Politics of Usability,

Springer-Verlag, London, 1998.
2. Ergonomic Requirements for Office Work with Visual

Display Terminals, ISO 9241-11, ISO, Geneva, 1998.
3. M. Good et al., “User-Derived Impact Analysis as a

Tool for Usability Engineering,” Proc. CHI Conf. Hu-

man Factors in Computing Systems, ACM Press, New
York, 1986, pp. 241–246.

4. D. Hix and H.R. Hartson, Developing User Interfaces:
Ensuring Usability Through Product and Process, John
Wiley & Sons, New York, 1993.

5. J. Nielsen, Usability Engineering, AP Professional,
Boston, Mass., 1993.

6. H. Beyer and K. Holtzblatt, Contextual Design: A Cus-
tomer-Centered Approach to Systems Design, Morgan
Kaufmann, San Francisco, 1997.

7. D.A. Dillman, Mail and Internet Surveys: The Tailored
Design Method, John Wiley & Sons, New York, 1999.

8. J. Preece et al., Human-Computer Interaction, Addison-
Wesley Longman, Reading, Mass., 1994.

9. L.L. Constantine and L.A.D. Lockwood, Software for
Use: A Practical Guide to the Models and Methods of
Usage-Centered Design, Addison-Wesley Longman,
Reading, Mass., 1999.

10. J. Whiteside, J. Bennett, and K. Holtzblatt, “Usability
Engineering: Our Experience and Evolution,” Hand-
book of Human-Computer Interaction, Elsevier North-
Holland, Amsterdam, 1988.

11. D.A. Norman, The Design of Everyday Things, Dou-
bleday, New York, 1990.

12. A. Cooper, About Face: The Essentials of User Interface
Design, IDG Books Worldwide, Foster City, Calif., 1995.

13. K. Mullet and D. Sano, Designing Visual Interfaces:
Communication Oriented Techniques, Prentice Hall,
Upper Saddle River, N.J., 1994.

14. B. Shneiderman, Designing the User Interface: Strate-
gies for Effective Human-Computer Interaction, Addi-
son-Wesley Longman, Reading, Mass., 1998.

15. R.G. Bias and D.J. Mayhew, Cost-Justifying Usability,
Academic Press, Boston, Mass., 1994.

J a n u a r y / F e b r u a r y 2 0 0 1 I E E E S O F T W A R E 29

About the Authors
Xavier Ferré is an assistant professor of software engineering at the Universidad Politéc-
nica de Madrid, Spain. His primary research interest is the integration of usability techniques
into software engineering development practices. He has been a visiting PhD student at CERN
(European Laboratory for Particle Physics) and at the HCIL (Human–Computer Interaction Lab-
oratory) at the University of Maryland. He received an MS in computer science from the Uni-
versidad Politécnica de Madrid. He is a member of the ACM and its SIGCHI group. Contact him
at xavier@fi.upm.es.

Larry Constantine is director of
research and development at Constantine & Lockwood, a training and consulting firm. He is
also an adjunct professor in the School of Computing Sciences at the University of Technology,
Sydney, where he teaches software engineering and managing organizational change, and he
is on the faculty of the Cutter Consortium. He has authored or coauthored 10 books, including
Software for Use: A Practical Guide to the Methods and Models of Usage-Centered Design (Ad-
dison Wesley Longman, 1999). Contact him at Constantine & Lockwood, 58 Kathleen Circle,
Rowley, MA 01969; larry@foruse.com; www.foruse.com.

Helmut Windl leads the User Interface Design Group for Simatic Automation Software at
Siemens’ Automation & Drives Division, where he has helped define and implement a struc-
tured usability process within the software development process. He is an experienced user-
interface and visual designer for large-scale software applications and a project leader for
usability-focused products. He is also a trainer and presenter in Siemens AG and with
Constantine & Lockwood. He received a diploma in electrical engineering from the University
of Applied Sciences Regensburg. Contact him at Siemens AG, A&D AS S8, PO Box 4848,
D-90327 Nuremberg, Germany; helmut.windl@nbgm.siemens.de.

Natalia Juristo is a full professor in
the Computer Science Department at the Universidad Politécnica de Madrid, where she directs
master’s-level courses in knowledge engineering and software engineering. She is also an edi-
torial board member of IEEE Software and the International Journal on Software Engineering
and Knowledge Engineering. She has a BS and PhD in computer science from the Technical
University of Madrid. She is a senior member of the IEEE Computer Society and a member of
the ACM, the American Association for the Advancement of Science, and the New York Acad-
emy of Sciences. Contact her at the Facultad de Informática UPM, Campus de Montegancedo,
s/n, Boadilla del Monte, 28660 Madrid, Spain; natalia@fi.upm.es.

Authorized licensed use limited to: University of London: Online Library. Downloaded on July 07,2022 at 15:34:10 UTC from IEEE Xplore. Restrictions apply.

