
:l64 IEEE TRANSACTIONS ON SO~•.\RE·ENGINEERING, VOL. f\E-I, NO. -l, DECE'MBEH 1975

The Source Code Control System

MARC J. ROCHKIND

'\

Abstract-The Source Code Control System (SCCS) is a software
tool designed to help programming projects control changes to source
code. It provides facilities for storing, updating, and retrieviJig all
versions of modules, for controlling updating privileges, for identify­
ing load modules by version number, and for recording who ma~e

each software change, when and where it was made, and why. This
paper discusses the SCCS approach to source code control, shows
how it is used and explains how it is implemented.

Index Terms-Configuration management, program maintenance,
software control, software project management.

I. INTRODUCTION

CO:MPUTER programs are always changing. There are
bugs to fix, enhancements to add, and optimizations

to make. There is not only the current version to change,
but also last year's version (which is still supported)
and next year's version (which almost runs). Besides the
problems whose solutions required the changes in the
first place, the fact of the changes themselves cr~ates

additional problems. The most serious are the followmg.
1) The amount of space to store the source code

(whether on disk, tape or cards) may be several times
that needed for any particular version. For example,
there might be "customer," "system test," and "de­
velopment" source libraries, with most modules repre­
sented by a different version in each.!

2) Fixes made to one version of a module sometimes
fail to get made to other versions.

3) When changes occur it is difficult to tell exactly
what changed and when.

4) When a customer has a problem it is hard to figure
out what version he has. '

The Source Code Control System (SCCS) attempts to
solve these problems by an approach which treats each
module as a set of related sequences of source code, each
member of which represents one version of the module.
There are as many different versions in the set as there
were changes to the module since its original coding. The
key features of SCCS fall into these categories.

Storage: All versions of a module are stored together in
the same file. Source code common to more than one
version is not duplicated. All versions are accessible.

Protection: A programmer may be restricted to updating
only designated modules, and only designated versions
of those. The only access to a module is through SCCS.

Manuscript received August 5, 1975.
The author is with Bell Laboratories, Murray Hill, N. J. 07974.
1 The term module refers to a convenient unit of source code,

usually a subroutine or macro.

Identification: The system automatically stamps load
modules with information such as version number, date,
time, etc. The source code that was used to make the
load module may later be retrieved from this information
alone.

Documentation: The system automatically records who
made each change, what it was, where it was made, when
it was made and why.

There are two implementations of SCCS: one for the
IBM 370 under the OS and one for the PDP 11 under
UNIX [1]. Most of this paper applies to both implemen­
tations, but where a difference is relevant it is noted.
More detailed comments about the implementations are
in Section IX.

II. :\IODEL AND NOMENCLATURE

At the heart of SCCS is its technique for storing
the changes made to a module. This technique is based
on the following model.

Each time the module is changed (each change usually
corresponds to one editor session) the change is stored
as a discrete delta. Conceptually, the deltas resulting from
a series of changes are strung together in a chain. Fig. 1
shows a module which has been changed three times. For
simplicity, the original module is also shown as a delta.
The source code of the module is accessible at each of the
four points at which deltas were added. To produce the
latest version, SCCS follows the chain from the be­
ginning, applying deltas as it goes. Each delta is applied
to the source code as it existed just prior to that delta.
Similarly, the source code as it was just before the last
change is accessed by applying only the first threei'deltas,
and so on.

lt is important to note at this point that Fig. 1 is
only a model; how the module is physically stored and
how the deltas are actually applied will be described in
Section VIII.

When a new module is coded, it is said to be at release
1. Each delta represents a new level. Deltas are named by
their release and level numbers. In Fig. 1, the first delta
represents release 1, levell, the second represents release
1, level 2, etc. Usually (but not necessarily), the first
few deltas correspond to the initial changes that are made,
to new modules: correcting syntax errors and bugs found
by "unit testing."

Let us continue this example by assuming that the
module of Fig. 1 is now turned over to a system-test
group. This group will be testing release 1. The program­
mer then begins working on enhancements which will be
incorporated into release 2. Traditionally, the programmer

Authorized licensed use limited to: University of London: Online Library. Downloaded on July 12,2022 at 23:11:05 UTC from IEEE Xplore. Restrictions apply.

H.OCHKIND: SOURCE CODE, CONTROl, SYSTEM 365

1,1 '12 1.3

Fig. 1.

1.4 I.l 12 1.3 1.4

Fig. 2.

2,1 2,2

makes a copy of the module at this stage and begins
modifying that copy. However, with sees the program­
mer just adds more deltas td, the end of the chain, specify­
ing that they belong to release 2. In Fig. 2 two deltas
have been addedtb release 2. Although the programII;ler
has added these new deltas to the same file that the sys­
tem-test group is using, the release 2 deltas cannot change
the Source code under system test. The reason is simply
that when the system-test group wants the source code
they request it at release 1, causing sees to stopap-
plying deltas with delta 1.4. '

Further development on the module follows the same
pattern. Eventually release 1 will be distributed to cus­
tomerS, release 2 will undergo system test, and the pro­
grammer will begin work on enhancements for release 3~

Note that the deltas have stayed put, but the names
(e.g., "development," "system test," and "custom6r")
for the releases have moved. Contrast this with the usual
situation in which the names for the source code libraries
stay the same but the modules are moved about.

The particular delta chain used in our example applies
to only this one module. In general, each module of a
software system will have a 4ifferent number of deltas
per release.

Of course, things rarely work out as smoothlv as we
have described them. Suppose that after the programmer
began addIng release 2 deltas a bug is discovered during
system test. This bug cannot be fixed by adding a delta
to the end of the chain, because that would make it a
release 2 delta, and the system-test' group is accessing the
module at release 1. Clearly, the delta (or deltas) needed
to fix'the bug must go in the middle of the chain, between
deltas 1.4 and 2.1. To do this the progr'ammer just specifies
release 1 when he makes the delta (the process of making
a delta will be described in Section VII). Fig. 3 shows the
delta chain with delta 1.5 'added. . '

When the module is next accessed at release 1, delta
1.5 will be applied. However, when the module is ~ext
accessed at release 2, delta 1.5 'will not be applied. If
sees were to apply it and then apply deltas 2.1 :and
2.2, the result could be disastrous.~ A warning message is
issue~ when a delta like 1.5 is skipped, to ensure that it
is riot forgotten'in the case where the bug it fixed is also
present in newer (higher numbered) releases.

D~ltas may only be added at' the end of a release; the
system would not permit a delta to be inserted 'between
deltas 1.2 aud1.3, for example. In practice, the point at
which new releases are begun is determined both by the
implications of this constraint and by the requirements
for protection, which will be discussed in Section IV.

2 Actually, in ~arlier ver.s!?ns of sees deltas like 1.5 were applied
to ~eleas~ 2. ThIS was .orIgma.lly thought to be desirable, but ex-
peflence showed' otheI'Wlse. .

The allowable number of releases and number of levels
per release are, for all practical purposes, unlimited (255
and 32 767).

Additional flexibility in controlling the effect of deltas
is provided by two kinds of special deltas. The first is
optional deltas. Optional deltas are like normal deltas in.
all respects, except that when added they are associated
with an arbitrary option letter. Optional deltas are only
applied if their associated option letter is specified by the
user. The original intention was that option letters would
be assigned to specific customers, and that optional deltas
would be used to install "temporary fixes" appropriate
only for one customer, with the idea that such fixes would
be incorporated into the standard product in the next
release. Optional deltas can be, and have been, used for
other, similar purposes. '

The second kind of special delta is one which, when
applied, explicitly forces other deltas to be applied or not,
by either including or excluding them. A list of deltas to be
included' or ~xcluded is specified when such a delta is
created. The exclusion facility is most often used simply
to correct mistakes. For example if, after delta 3.14 is
added, it is found to be undesirable, the programmer might
add delta 3.15 which excludes it. If the module is accessed
at level 3.14, delta 3.14 itself would be applied. If the
module is accessed at level 3.15, though, delta 3.14 would
not be applied. From the viewpoint of control, this form
of error correction is safer than allowing the programmer
to actually delete a delta, since no potentially necessary
information is lost.

The inclusion facility is most often used to either make
optional deltas effectively nonoptional, or else to force
a delta which has been added in the middle of the delta .
chain (such as delta 1.5 in Fig. 3) to be applied in higher
numbered releases. , ." .,

A delta which includes and/or excludes other deltas
may be optional. Additionally, a (possibly optional) delta
which includes and/or excludes other deltas may in turn
be included or excluded by some other delta. If one delta
includes a delta, and another delta excludes, that same
delta, the chronologically newer of the two including/ex­
cluding deltas has precedence.

III. IDENTIFICATION

The purpose of the sees identification facilities is to
permit the correct version of the source code to be deter­
mined from information associated wIth a load module.
With sees this information is especially useful be:..
cause t4e system can rege~erate the correct version of
SOllrce code from it. In general, it is best to place the.
identification within the source code in a way that will
cause the information to .ap'pear in the load module also.
For example, a, PL/J. program might be identified with ..~

Authorized licensed use limited to: University of London: Online Library. Downloaded on July 12,2022 at 23:11:05 UTC from IEEE Xplore. Restrictions apply.

366

Fig. 3.

variable initialization, like this:

• DCL REL_LEV CHAR(6) INIT('5.31');

This is sufficient to ensure that the string "5.31" appears
someplace in the object code; the only problem is finding
it when it is needed. To help, utility programs have been
written for each computer system with which SCCS is
used to find the identification information within a load
module automatically.

Rather than impose a particular content and form for
identification information, SCCS instead provides a
general facility that allows projects to adopt their own
schemes. This approach also avoids the problem of provid­
ing separate support for each of the numerous languages
used at Bell Laboratories. Essentially, identification is
provided by a set of predefined, parameterless macros,
called identification keywords. Each keyword sta~ds ror
one piece of identifying infonnation. For example, R

stands for the release, L stands for the level, D stands for the
date, etc. In all there are about a dozen keywords. When
SCCS generates a version of a module, it replaces every
appearance of an identification keyword within control
characters (% by default) by the identification datum
appropriate to that generation. For example, if the
stored source code for a module contains

DCL ID CHAR(13) INIT('%R%. %L% %D%');

and the user requests level 2.16 on Mar. 17, 1975, the
same line in the generated source code would appear like
this:

DCL ID CHAR(13) INIT('2.16 750317');

The particular set of identification keywords used de­
pends on the needs of the project using SCCS. The
most common set is keywords representing release, level,
option letter, date and time. Actually, no matter how
complex the delta chain, the release, level, and option letter
alone are sufficient to identify a version.

SCCS also has a facility which allows identification
keywords to be used in conjunction with IBM identificatian
records [2]. An identification record,is an area of a load
module specifically designed for identification information.

IV. PROTECTION

The goal of protection with SCCS is not so much
to prevent sabotage as to ensure that there is no confusion
about what the management of a project does and does

;not want programmers to change. Very clever program-:­
...mers can compromise the protection mechanism; how­

ever, conscientious programmers need only be reminded
.when they are trying to change something they should not.

The SCCS protection facilities are oriented towards
limiting what modules a programmer can add deltas to
and in which releases. More basic protection, against, for

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, DECEMBER 1975

example, "zapping" an SCCS module to change the
meaning of a delta, is provided by the operating system
under which SCCS runs.

To be completely flexible, each module would have to
be associated with a bit matrix with programmer's names
along one dimension and releasesalong the other.s Neither
SCCS implementation goes this far; instead they treat
each dimension separately. Both implementations keep a
list of locked releases for each module. No one can add a
delta to a locked release. For the programmer dimension,
the PDP 11 implementation keeps a list of programmer's
names for each module. The IBM 370 implementation
does not limit updating by programmer at all. It does,
however, maintain release passwords in addition to the
release locks. A programmer must supply the proper
password in order to add a delta to a. password-protected
release.

On another level, both implementations require an
administrator's password for certain functions, such as
setting the locks and passwords,changing the list of
programmers permitted to add deltas, creating or deleting
modules, and so on.

The degree of protection employed depends on the
project using ,sCCS. Often when individuals use it for
their personal programs no protection at all is set up:
the individual is his own administrator, and he can add
deltas to any release of any module.

V. DOCUMENTATION

As soon as something goes wrong with a program, the
first question an experienced programmer asks is "What
changed?" This is usua11y a diffiGult question to answer.
Often the answer is not found until the bug which caused
the problem· is itself found. SCCS provides an easy
answer to this question, and having the answer at the
outset usually helps in finding the bug.

For each delta, sces automatically records who
added it and when it was added (date and time to the
nearest second). Where the change was made, that/is,
to what source lines, and what the change actually was
is recorded by the nature of the deltas themselves. (The
technique actually used to store this information will be
explained in Section VIII.) The reason for the delta is
not recorded automatically; it must be supplied by the
programmer adding the delta, but it is required. The
quality of the reason (like the quality of the change
itself) depends on the conscientiousness of the program­
mer. Reasons like "Trouble Report 5576; change SUM
header" are what one likes to see. Sometimes, unfor­
tunately, one sees instead things like "Another bug" or
"Tried again."

SCCS incorporates the delta documentation into
several reports. The most common is issued whenever a
module is accessed. It is a chart giving, for each delta, the
release, level, option letter (if any), date and time of

3 Of course, the information would not actually have to be stored
in matrix form; it could be compressed in a variety of ways.

Authorized licensed use limited to: University of London: Online Library. Downloaded on July 12,2022 at 23:11:05 UTC from IEEE Xplore. Restrictions apply.

ROCHKIND: SOURCE CODE CONTROL SYSTE,M 367

delta modx

VIII. DELTA STORAGE AND ACCESSING
ALGORITHM

In the second step, the programmer '''marks up" the
file named "modx.a" generated by the get command with
the UNIX editor, an interactive context editor styled
after QED [3]. If necessary, this step may span several
days, or even 'weEJks, and may involve several editor ses­
sions and compilations.

Whenever the programmer is ready, he takes the third
step, which is the adding of the delta to the chain. The
command

The attempt by SCCS to record every version Qf
every module that ever existed is rather ambitious. The
system would be impractical unless it used a storage
technique and accessing algorithm that allowed many
deltas to be kept at a reasonable cost in terms of disk
space and processing time. SCCS meets both of these
criteria. The space required to store a delta is only slightly
greater than the amount of text inserted by that delta.
The accessing,algorithm allows any level to be reached iIi
essentially equal time, by applying deltas in parallel
during a single pass over the file containing the module.

All changes are stored in terms of two primitives: in­
sertion of an entire line and deletion of an entire line.
This means, for example, that the replacement of a single
character on a line is stored as a deleti()n of the entire old
line and an insertion of an entire new line. Also, a/move­
ment of a block of lines from one point in the module to
another is stored as a deletion of the block at thedfd
location and an insertIon of an identical block at the new
location. By using only these two primitives information
is lost. However, experience has demonstrated that this
information is not really essential; it is sufficient that
SCCS be able to reproduce the required versions accurately.

Each module is stored in a separate sequential file.
The part of the file where the actual deltas are kept is
called the body. The body consists of text records, con­
taining source code inserted by deltas, and control records,
which specify the effects of each delta. The relationship
between text and control records is best explained by
showing how a new delta is added to an existing module.,

The typical source code change to be incorporated into
a delta consists of several insertions and deletions at
different points in the module. Where an insertion is to be
made, the' new source code is physically inserted at the
appropriate place, as a sequence of text records, one per
source line. The new text is bracketed with two control

performs a heuristic comparison between the file originally
generated in the first step (which is regenerated for the
comparison) and the file as modified by the programmer.

, The changes found are incorporated into a delta, in a
way to be described in the next section.

Between steps one (get) and three (delta) any other
attempts to add a delta to the same module are locked
out. However, access for read-only purposes is allowed.

get modx - r1.3

get' modx - r2 - e

get modx - r3.4 - c7502

VI. ACCESSING MODES

creation, who added it, why it was added, whether it was
applied in this particular access, and why it was or was
not applied (for ex"ample, if it was optional, included or
excluded).

get modx - rl

would be used to access module "modx" at the highest
level of release 1 (1.5 in this case). A level number may
also be given:

This and- the next section ,are intended to illustrate
how SCCS is actually used. There are, of course, hun­
dreds of details which will not 'be described here. Hope-'
fully, though, we can give some idea of what the system
is like.

A user communicates with SCCS through a set of
commands. The set used in the PDP 11 implementation
will be shown here. The simplest and most common way
in which modules are aGcessed is by name alone:

get modx

causes SCCS to generate the source code correspond­
ing to the very end of the delta chain. If Fig. 3 represents
the chain for module "modx," then this command would ­
produce the source code corresponding to level 2.2. The
generated source code is written into an auxiliary file
named "modx.a."

If the source code is needed at some other release, the
desired release is specified with the r parameter:

VII. MAKING A DELTA

With the PDP 11 implementation, making a delta is a
three-step procedure. The first step is to obtain a copy of
the module to be changed. This is done with the get com­
mand:

accesses "modx" at level 1.3.
An option letter may be specified with the 0 parameter:

get modx - r3.11 - oX

requests "modx" at level 3.11 with optional deltas asso­
ciated with letter "X" applied.

Finally, modules may be accessed with a cutoff date
given by the cparameter:

accesses "modx" at level 3.4, but without the application
of any deltas newer than the last day of February, 1975.

,
..:rhe e parameter specifies that this access is for the pur-
pose of making a delta. Among other things, it suppresses
the substitution of identification keywords by particular
values. Essentially, in this step the programmer is saying,
"I want to change module 'modx'. Give me a copy to mark
up." ,

Authorized licensed use limited to: University of London: Online Library. Downloaded on July 12,2022 at 23:11:05 UTC from IEEE Xplore. Restrictions apply.

:368

records. The first, placed just before the start of the text,
is called an insertion control record. It consists of a code
indicating insertion and the release and level numbers of
the new delta. The text is followed by an end control
record, which consists of a code indicating end and, again,
the release and level numbers (these are needed because
the vari~us bracketing con~rol records do not necessarily
nest). The control-record brackets are used during the
accessing process to delimit text to be either kept or
skipped, depending on whether the delta is to be appljed
or not.

Text to be deleted by the new delta is also bracketed
with control records. The opening bracket is a deletion con­
trol record, consisting of a code indicating deletion and the
release and level numbers. The closing bracket is an end
control record. Hence, there are. three types of control
records in all. Fig. 4 shows the body part of a typical file.
The letters I, D, and E represent codes for insertion, dele­
tion, and end control records, respectively.

The source code corresponding to a particular level is
generated in the following way. The body is scanned se­
quentially record by record. When a text record is en­
countered, it is either kept or skipped depending on the
setting of a toggle called the keep switch. A yes setting
indicates that the record is to be kept, and a no setting
indicates that it is to be skipped. Wheri an insertion or
deletion control record is encountered, an entry is made
into a linked list called the control queue. The entry COn­
tains the relell,se and level numbers of the delta, the date
and time of the delta, and a flag field (to be explained
shortly). The control queue is maintained in chronological
order, with the entry corresponding to the newest delta
at the head. When an end control record is encountered
the matching control queue entry is removed from the
list~

Note that there will never be two entries in the control
queue which correspond to the same delta.

The flag field of a control queue entry has one of three
values: yes, no or nttll. Whenever the control queue is
changed, the keep switch is reset according to the flag
field of the entry at the head of the control queue, if the
flag value is yes or no. If the value is null, the next entry
is examined to see if its flag is yes or no. The search con­
tinues until a value other than null is found. The search
will always be successful.

A flag field value depends on ~·hether the corresponding
control record is an insertion or deletion, and whether
the corresponding delta is to be applied or not. If an
insertion is to be applied, the value is yes. If an insertion
is not to be appl~ed, or if a deletion is to be applied, the
value is no. If a deletion is not to be applied, the value
is null.

The body part of a file is preceded by three other parts
called the hf?ader, the release table, and the delta table.
The header contains assorted information associated with
the module, such as the release· locks, the list of program-

. mers authorized to add deltas, the language the moduie is
written in, an English description of the module, and

IEEETRANSACTION~ON SOFTW.\RE EN(lINEERINH, DECEMBER]975

11.1

1 IA

text of /.4

EIA

text of 1./

DL2

more text of J, I

E L~ .

I L~

text of I.':

DL3

more text of /.:!

E L~

more text of /.1

EL3

more text of I. J

EI.I

Fig. 4.

other similar" information. SOme of this information is
not used by sees directly, but is recorded only to
help document the structure of the software project.

The release table consists of just a count of the num­
ber of deltas in each release. Its only purpose is to enable
sees to configure certain internal storage structures
in preparation for processing the body.

Finally, the delta table contains all the information as­
sociated with each delta which is required to decide
whether, in a particular access, that delta is to be applied
or not. This required information is the release number,
the level number, the option letter (if any) and the date
and time the delta was added. Each delta table e,ntryalso
contains a list of other deltas included or excluded by
that delta, if any, and information 'about who made the
delta and why (as described in Section V). Prior to the
execution of the accessing ll,lgorithm itself, the decision
as to which deltas are to be applied is made based on the
information about each delta in the delta table and the
release, level, optioIl letter, and cutoff date specified on
thj:l get command. These decisions are stored in an ilternal
array indexed by release and level number. Later, while
processing the body, each control recol"d encountered is
looked up in this array to find out if the corresponding
delta is to be applied.

The time required to access a given level of a module
depends most strongly on the total number of records
(control and text) in the body; It depends less strongly
on the amount of activity on the control queue, which is
determined by the total number of control records. It
depends hardly at all on the number of deltas. Therefore,
if, say, 17 insertions have to be made, it makes no dif­
ference. to the accessing time whether they are made in
one delM or 17.

IX. DIPLE:\1:ENTATION AND HISTORY

Because sees represented such a· radical departure
from conventional methods for controlling source code, it
became clear when we began development of it (in late

Authorized licensed use limited to: University of London: Online Library. Downloaded on July 12,2022 at 23:11:05 UTC from IEEE Xplore. Restrictions apply.

UOCHKIND: ;;OlJRCE CODE CONTROL SYSTEM

1972) that a paper ~pecificationwould not be sufficient to
"sell" the system to:the software projects for which it was
in~ended; we would have to have a working prototype. It
was .essential that this prototype be available quickly for
trial by the projects; It was also important that it be
reliable froIl} the start, so that sees would not have to
begin life with a bad reputatioQ to overcome. We decided
to implement sees on the IBM.370, underOS/MVT, and,
to code the system in SNOBOL 4 [4J, using the SPITBOL
compiler [5]. We chose SNOBOL 4 because of its power,
which would allow us to spend a minimum amount of
time on coding details, particularly those relating to
dynamic storage management, and because of its debug­
ging facilities, especially symbolic tracing and dumping.
Experience has justified our choice. The first release of
sees was coded, debugged, and tested by one person in
less than three months.

In most cases, a penalty for using SNOBOL 4, even when
compiled with SPITBOL, is that the resulting program is
bigger4 and slower than it would be if coded (with con­
siderably more effort, of course) in a lower level language,
such as, say, BLISS [6J or PL 360 [7]. These factors were
irrelevant during the six-month trial period following com­
pletion of the prototype, in which several large applica­
tions experimented with the system. When one project
decided to adopt sees, the efficiency of the system be­
came very relevant, but it was efficient enough so that
they simply continued to use the prototype. Since this
project began usIng sees many enhancements have been
made to it, but it is still basically the same SNOBOL 4
program.

In the fall of 1973, with several additional projects
eager to use sees, we decided that, rather than continue
to enhance the IBM 370 implementation, or to recode it
entireiy, we would take an entirely different, much more
ambitious approach. This approach was prompted by two
problems. First, a very large project wanted to use sees
on a Univac 1110, and it looked like we would have to
implement sees on that machine. The second problem
was that, although our IBM sees users were satisfied,
we felt that sees should provide int~ractive text editing,
which would require a major redesign of the IBM imple­
mentation. We found a novel solution for both these
problems: we would design a new -sees which would
run on neither the Univac nor thfl IBM, but on a
PDP 11/45 under UNIX. Source code would be stored, via
sees, on the PDP 11, rather than on the Univac or IBlVI
machines. To compile the source programs, jobs, contain­
ing the source code along with appropriate job control
language; would be sent to either the Univac or the IBM.
In fact, we went beyond the original,limited, goals of
.§ees and set out to design a complete project design, de­
velopment and maintenance facility on the PDP 11/45
which we called the "Programmer's Workbench." sees is
only a part of this facility; other components include re-

4 At our installation the size penalty is not too severe because we
now use OS/VS2.

369

mote job-entry to both Univac and IBM, project docu­
mentation tools,· a trouble reporting system, and a load
and regression testing facility for IBM I1\lS [8J "and
Univac BIeSlloo [9J projects.

With respect to the Programmer's Workbench version
of sees, the term "source code control system" is actually
a misnomer; sees if;! used' to control changes to docu­
ments, such as user manuals or program logic manuals, as
well as to source code. The system might better be called
a "text control system."

The Programmer's Workbench has proven to be very
popular with both management and programmers, and is
now used by almost all software projects at the author's

. installation. The current users of the original IBM sees
implementation plan to switch to the Programmer's
Workbench in 1976, at which time the "prototype" will
finally be abandoned.

X. STATISTICS

In order to give an idea of the size of the projects using
sees, we present some statistics gathered from the
largest user of the IBM 370 implementation. This project
has about 100 programmers. They have been using sees
for about two years, although conversion of their S'ub­
systems to sees occurred gradually during their first
year of use. When our statistics-gathering program was
run, it reported the following figures: 2964 modules,
14- M;r; rl"lt.<l." <l.nrl 1 01 f\ 7f\f\ t,nt,<l] r"t>nrrl" (int>1nrlinl!"_ hot.h_________,--0-0_.-. - ~__ _ --------- __ •• _._._~ , - :·--_-_-_:_:_:~-.J-7;;-~-j-~--- ---~ __ _

text and control records in the body and the header, re­
lease tl1ble and delta table). This works out to an average
of about 5 deltas per module. However, 1209, or 40
percent, of the modules had only one delta; i.e., they had
been placed under sees control but had not yet been
edited with sees. For the modules which had been
edited with sees, the average is 7.5 deltas per module.
Also, 126 modules had more than 25 deltas.

When all of the modules were ,accessed at their latest
level, they totaled 740719 lines. This number may be
taken as the minimum number of lines which mus't'~e

kept, assuming that only the latest version is needed.
, At an additional space cost of 37 percent, sees not only
keeps the necessary versions (one each for customer,
system test, and development), but also can regenerate
any module at any point since it was placed under sees
control, as well as maintain a complete history of the
changes to the project's software.

ACKNOWLEDGMENT

The author wishes to thank D. A. Nowitz who worked
with him on the original design of sees. The idea of
having deltas came from IBM's CLEAR [10J, although,
for the most part, similarities between the two systems stop
there. Even as far as deltas are concerned, in CLEAR there
tend to be relatively few deltas which, once added, may
be changed. In sees deltas may not be changed once

5 Which were used to prepare this paper.

Authorized licensed use limited to: University of London: Online Library. Downloaded on July 12,2022 at 23:11:05 UTC from IEEE Xplore. Restrictions apply.

370 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOl,. BE-I, No.4, DECEMBER 1975

added, although the effects of them may be altered by
adding more deltas. At various times, S. F. Coppage,
S. T. Feczko, and A. L. Glasser worked with the author
on the design and coding of enhancements to the IBM 370
implementation. The idea of the Programmer's Workbench
came mostly from E. L. Ivie, and a dozen or so people
have worked on various p,arts of it; the author was re­
sponsible only for the SCCS component.

[7] N. Wirth, "A programming language for the 360 computers,i'
J. Ass. Comput. Mach., vol. 15, pp. 37-74, Jan. 1968.

(8) Information Management System Virtual Storage (IMS/VS)
General Information Manual, IBM, Form GH2Q-1260.

[9] BICSll00 System Information Manual, Univac, Form NA8300.
[10] H. M. Brown, "Presentation on Clear," Software Engineering

Techniques, (Proc. of con£. sponsored by NATO Sci. Com­
mittee) Apr. 1970 (available from Scientific Affairs Division,
NATO, Brussels, Belgium).

REFERENCES
[1] D. M. Ritchie and K. Thompson, "The UNIX time-shaHng

system," Commun. Ass. Comput.Mach., vol. 17, pp. 365-375,
July 1974.

[2] OS/VS Linkage Editor and Loader, IBM, Form GC26-3813.
[3] L. P. Deutsch and B. W. Lampson, "An online editor," Com­

mun. Ass. Comput. Mach., vol. 10, pp. 793-799, 803, Dec. 1967.
[4] R. E. Griswold, J. F. Poage, and I. P. Polonsky, The SNOBO'L.t,

Programming Language, 2nd ed. Englewood Cliffs, N. J.:
Prentice-Hall, 1971.

[5] R. B. K. Dewar, SPITBOL Manual, Version 2.0, Illinois Inst.
of Technol., Chicago, Ill., Feb. 1971.

[6] W. A. Wulf, D. B. Russell, and A. N. Habermann, "BLISS: A
language for systems programming," Commun. Ass. Comput.
Mach., vol. 14, pp. 780-790, Dec. 1971.

Marc J. Rochkind was born in Baltimore,
Md., on June 12, 1948. He received the
B.S.M.E. degree from the University of
Maryland, College Park, and the M.S.M.E.
degree from Rutgers University, New Bruns­
wick, N.J., in 1970 and 1972, respectively.

Since 1970 he. has been a member of the
Technical Staff at Bell Laboratories, Murray
Hill, N.J. He is currently engaged in the
development of software systems for use
by Bell Telephone companies.

Program Design by ·a Multidisciplinary Team

SUSAN VOIGT

Abstract-The use of software engineering aids in the design
of a structural finite-element analysis computer program for the
CDC STAR-IOO computer is described. Since members of the de­

.sign team came from diverse backgrounds, both the unique features
of the CDC STAR computer and structural analysis concepts and
computing requirements had to be understood before design began.

Nested functional diagrams to aid in communication among team
members were used, and a standardized specification format to
describe modules designed by various members was adopted. This
is a report of work in progress where use of the functional diagrams
provided continuity and helped resolve some of the problems arising
in this long-running part-time project. '

Index Terms-Modularity, program design, program specifica­
tions, software engineering, structural finite-element analysis,
top-down design. .

INTRODUCTION

GENERALLY, a computer program begins as an idea
in the head of a potential user. The user enlists the

aid of a software analyst to help design a program, and a

Manuscript received August 5, 1975:
The author is with NASA Langley Research Center, Hampton,

Va. 23665.

program development project is born. Over the years,
experienced programmers and analysts have developed
techniques which are useful in designing programs. For
example, a flow chart is one way of diagrammi~ the
sequence of operations to be performed in a program.
Flow charts are a convenient way for assembly language
pr<;>grammers to gain insight into program logic. Since the
advent of higher level languages, flow charts are no longer
essential to sequence the logical steps of a program. For
example, experienced programmers think in Fortran and,
consequently, can write a program directly without first
diagramming the logic with a flow chart. Flow charts,
therefore, often have become an "after the fact" means of
documentation and have ceased to be an aid to program de­
sign. In many cases, functional flow charts describing the
general logic flow in a program are developed as part of a
program's documentation after implementation of the
program.

For most large program developments, more than one
program designer is involved, more than one user must be
satisfied, and usually other programmers implement
the design. In large program developments program

Authorized licensed use limited to: University of London: Online Library. Downloaded on July 12,2022 at 23:11:05 UTC from IEEE Xplore. Restrictions apply.

