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As software products 
evolve, complexity 
shifts from lower 
to higher structural 
levels, or vice-versa. 
Managing this 
complexity could 
require periodic 
major restructuring  
of software 
applications.

S
oftware’s structural complexity depends on the code base’s hierarchical organiza­
tion, beginning at the method level and migrating up through the class, package, 
and component levels. This complexity also depends on the nature of the depen­
dencies that bind the different software elements together. In and of itself, struc­

tural complexity is not necessarily a problem. In fact, most large systems tend to be highly 
complex. John McGregor offers an interesting distinction between complex and complicated 
systems.1 Complexity may be inherent in the problem domain and, therefore, may require 

a complex solution. Such a solution might require 
time to understand because of the many interact­
ing parts, but it has a rational structure that is 
understandable. A complicated solution, on the 
other hand, is difficult to understand and analyze. 
Clearly, designers must avoid complicated solu­
tions and properly manage those that are complex. 
Otherwise, excessive structural complexity (XS) 
can become increasingly problematic for the ongo­
ing development, testing, maintenance, and reuse 
of software.

Using a new complexity measurement frame­
work called Structure 101 (www.headwaysoftware. 
com/products/structure101/index.php), we conduc­
ted a case study to track the structural complexity of 
three open source software products as they evolved 
through their different releases. Our analysis shows 
that as software products evolve, complexity shifts 
from lower to higher structural levels, or vice-versa. 
Refactoring efforts can reduce complexity at lower 
levels (for example, within leaf packages or meth­
ods), but they shift complexity to higher levels in 
the design hierarchy. Managing complexity at these 

higher levels requires design restructuring or archi­
tecture reengineering. This cycle of shifting com­
plexity can lead to points of excessive complexity 
in a software product, called epochs. If this pattern 
holds true for most software products, then mere 
refactoring at the code level might not be sufficient 
to effectively manage structural complexity in soft­
ware. Periodic major restructuring of software ap­
plications at either the design or architectural level 
could be necessary.

Traditional complexity metrics
Complexity’s relative impact varies depending on 
the abstraction level in the design hierarchy. For 
example, cyclic dependencies between software 
packages and components have a greater impact 
than excessively complex code at the method level, 
because a change in one package or component 
can adversely affect all dependent packages or 
components.

At the method level, designers assess a software 
system’s structural complexity (also known as al­
gorithmic complexity) by measuring its cyclomatic 
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complexity,2 which is the number of possible exe­
cution paths through the body of code. The higher 
the value of cyclomatic complexity, the more com­
plex the method code.

Designers assess structural complexity in a soft­
ware system at higher abstraction levels such as a 
class, package, or component level by measuring 
coupling and cohesion metrics.3,4 Excessively com­
plex systems tend to have high coupling and low 
cohesion. High coupling implies many interacting 
parts forming a dependency graph with several 
nodes (representing software components, pack­
ages, or classes) and edges (representing relation­
ships between software components, packages, or 
classes). Ideally, the coupling, measured as afferent 
(incoming dependencies) and efferent (outgoing 
dependencies), should be low, and the dependency 
graph should be acyclic.5 Cycles in a dependency 
graph, especially large ones, form tangles, where 
the code becomes harder to develop, understand, 
maintain, and test. Low cohesion implies that parts 
within the system have many unrelated responsibili­
ties. Designers assess cohesion by measuring rela­
tional cohesion,5 which should be high.

These traditional metrics for cyclomatic com­
plexity, coupling, and cohesion are not practical 
for quantitatively comparing complexity between 
different applications.6 However, there are other 
techniques that are more suitable for performing 
such comparisons as well as for comparing com­
plexity between different releases of the same ap­
plication type.7

Structure 101 
measurement framework
When working with large, complex code bases, 
traditional object-oriented metrics, such as those 
just described, offer only a limited snapshot of 
system complexity. They lack the capacity to vi­
sualize the impact of dependencies on emerging 
designs, particularly when these dependencies 
are rolled up through the structural hierarchy. 
(“Rolling up” means determining the complex­
ity at a higher level in the structural hierarchy of 
a code base by recursively aggregating the com­
plexities of its lower-level constituent parts. For 
instance, the complexity of a program can be 
determined from the complexity of its constitu­
ent packages, whose complexity in turn can be 
determined from their constituent subpackages, 
and so forth.) A simpler and definitive approach 
is necessary to compare two software programs’ 
complexity, whether they are different programs 
or different versions of the same program.

The Structure 101 measurement framework 

provides a comprehensive view of structural com­
plexity within a software system. This measure­
ment framework is based on two aspects of XS: 
tangles and fat (see the “Measuring Excessive 
Complexity” sidebar). Tangles are cyclic dependen­
cies between packages. Robert Martin’s acyclic de-
pendency principle dictates that “the dependency 
structure between packages must be a Directed 
Acyclic Graph (DAG). That is, there must be no cy­
cles in the dependency structure.”5 Although cyclic 
dependencies between classes or methods within 
a package are often unavoidable, such dependen­
cies between packages lead to highly coupled code 
that’s difficult to maintain and extend because all 
the packages involved in a tangle are integrally tied 
to one another and affected by any changes intro­
duced within the group. Fat measurement gives a 
sense of how easy it is to understand a given code 
base. Excessive dependencies among packages, 
subpackages, and classes, and excessive cyclomatic 
complexity within methods make the code harder 
to understand, test, and maintain.

The concepts used in the measurement of XS 
are based on Thomas McCabe’s cyclomatic com­
plexity,2 as well as dependencies (including cyclical 
dependencies) between software elements. Software 
complexity studies have widely used these tradi­
tional metrics to characterize cohesion and coupling 
within a system. The only difference in the Struc­
ture 101 approach is how these complexity metrics 
are rolled up in the code base hierarchy to give an 
overall picture of how complex a particular system 
is. The roll-up mechanism calculates the complexity 
of an element higher up in the hierarchy by recur­
sively aggregating the complexity of its constituent 
parts (see the sidebar).

Evolution in open source software
With the growing popularity of open source soft­
ware, there is increasing interest in evaluating the 
development practices within open source com­
munities. In the open source software development 
model, the project requirements are often loosely 
defined, continue to evolve over the lifetime of the 
application, and are driven by the interests of their 
user-developer communities.8 As a consequence, 
high-level package design continually emerges 
along with the code-level design. As Lehman’s laws 
predict, such emerging designs will become in­
creasingly more complex over the software’s evolu­
tion unless there are efforts to reduce or maintain 
it. Stephen Schach and his colleagues have observed 
this phenomenon, especially in the Linux operating 
system.9 Neil Smith, Andrea Capiluppi, and Juan 
Ramil have observed it in 25 open source soft­

The Structure 101 
measurement 
framework 
provides a 

comprehensive 
view of 

structural 
complexity within 

a software 
system. 
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The Structure 101 complexity measurement framework (www.
headwaysoftware.com/products/structure101/index.php) 
calculates the excessive structural complexity (XS) of an ele-
ment (such as a method, class, or package) within a soft-
ware system by multiplying the degree of violation (a value 
normalized between 0 and 1) due to tangles and fat by its 
size. To calculate the degree of violation due to tangles (cyclic 
dependencies between packages), Structure 101 identifies the 
minimal feedback set (MFS), the minimum set of edges that 
must be removed from a dependency graph of a software 
system to eliminate cyclic dependencies. The framework di-
vides the number of code-level references in the MFS by the 
total number of dependencies in the graph, and expresses 
this quotient as the degree of tangle violation. For example, 
the MFS for the graph shown in Figure A is 3. The number of 
code-level references in the MFS is 28(22 + 3 + 3). Therefore, 
the degree of tangle violation is (0.062)[28/(22 + 329 + 3 + 
8 + 84 + 3)].

Structure 101 measures fat differently at each level of the 
code base hierarchy. The fat metric gives a sense of how 
easy it is to understand a given code base. At the higher-level 
packages (those containing subpackages), the framework cal-
culates fat as the number of dependencies. For example, the 
parent of the graph in Figure A has a fat of 6 (simply count 
the edges and ignore the code-level references). At lower-
level packages (those containing classes), the framework 
computes fat by counting the total number of dependencies 
between classes within the given package. To calculate the 
fat of a class, Structure 101 uses a dependency graph for the 
methods and attributes within the class to count the number 
of dependencies. Finally, the framework calculates a method’s 
fat by using Thomas McCabe’s cyclomatic complexity.1

The degree of fat violation depends on the extent to which 
fat exceeds the threshold. Structure 101 then converts the de-
gree of violation to a normalized XS value (between 0 and 1), 
using the following equation:

max{0, [(value – threshold)/value]}

The framework then multiplies the degree of tangle vi
olation and the degree of fat violation by the item’s size, 
which the framework measures according to the set of  
rules in Table A.

Finally, the framework calculates cumulative XS by re-
cursively aggregating all the local XS values for a particular 
item’s descendants. The average XS is the quotient of the cu-
mulative XS and the size, and it reflects the percentage of the 
code base that is excessively complex.

Reference
	 1.	 T. McCabe, “A Complexity Measure,” IEEE Trans. Software Engineering, 

Dec. 1976, pp. 308–320.

Measuring Excessive Complexity

Table A
Set of rules used by Structure 101 to determine  
the size of each element in a software system

Element Size

Field 1

Method 1 + NI*

Class (and inner classes) 1 + sum of sizes of all contained fields and methods

Leaf-level package Sum of sizes of all contained classes

Design-level package Sum of sizes of all contained packages

* NI is the number of bytecode instructions in the method body.

Event

32922

Chart

33
848

Annotations User
interface

Figure A. Graph illustrating the calculation of the 
minimal feedback set (MFS). Edges represent 
dependencies. Numbers on edges represent code-level 
references. Dotted edges represent the edges in the 
MFS.
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ware systems.10 We applied the new complexity- 
monitoring technique to track structural complex­
ity in software applications as they evolved through 
their different releases.

Case Study: Structural  
complexity in JFreeChart
To begin our study, we conjectured that a high 
proportion of structural complexity in the early re­
leases would be found at the application-code level, 
which would then progressively migrate to higher-
level design and architectural elements in subse­
quent releases. This pattern would then repeat itself 
throughout the evolution of a software product, re­
quiring periodic maintenance efforts such as code 
refactoring, design restructuring, or architecture 
renovation (Figure 1). We presumed that this phe­
nomenon would particularly hold for open source 
applications, in which a high-level design emerges 
with the code-level design.

We explored this phenomenon for 38 different 
releases of JFreeChart, an open source charting ap­
plication written in Java. JFreeChart has been under 
active development for more than six years and has a 
well-documented history, with 38 versions available 
in the SourceForge repository (http://SourceForge. 
net). Because of these characteristics, several evo­
lutionary studies have used JFreeChart.11–13 In 
addition to studying the appropriate metrics, we 
reviewed the developer logs. Confirming our em­
pirical evidence, developer release notes specifically 
indicate that package-splitting activities occurred 
whenever total XS decreased significantly. These 
package-splitting activities greatly reduced fat, but 
the packages remained integrally tied together, thus 
introducing cyclic dependencies at the design level. 
These observations support our hypothesis.

The distribution of each release of JFreeChart 
includes several jar files, but we focused on examin­
ing the complexity introduced during the evolution 
of the core graphics library (jfreechart.jar and jcom­
mon.jar) and not any complexity from peripheral 
jar files (junit.jar, servlet.jar, and gnujaxp.jar). Fig­
ure 2 shows the average XS values per release ob­
tained using only the core application jars.

For each of the 38 release versions of JFreeChart, 
Figure 3 shows the relative contribution of fat and 
tangles to the XS, broken down by design-level 
scope. Interestingly, early in JFreeChart’s devel­
opment, fat leaf packages were the greatest con­
tributors to XS. With the ongoing development of 
JFreeChart, the XS increasingly moved to higher 
levels in the design hierarchy. This was particularly 
apparent during the first major restructuring ef­
fort, which occurred between releases 13 and 15. 
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Code-
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Figure 1. Idealized evolutionary pattern in which complexity grows 
until code refactoring, design restructuring, or architectural renovation 
is necessary. (The gold line represents idealized growth of source lines 
of code over time.)
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Figure 2. Average excessive structural complexity (XS) per release  
in JFreeChart.
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in JFreeChart releases.
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Because of this restructuring effort, overall XS de­
creased by 24 percent. This decrease was largely 
due to the reduction of fat leaf packages. However, 
as a consequence of the refactoring efforts to reduce 
fat packages, cyclic dependencies crept in, creating 
tangles in the design-level hierarchy. This permu­
tation occurred again 16 months later, when the 
JFreeChart developers restructured release 30 to 
reduce fat leaf packages, which had grown exces­
sively large. The complexity moved to the design 
level in release 31, with an increasing number of 
cyclic dependencies present in the high-level design 
hierarchy.

We selected for further study any consecutive 
releases of JFreeChart exhibiting more than a 10 
percent increase or decrease in average XS. Among 
the 38 releases of JFreeChart, we identified three 
development periods, or epochs, that exhibited XS 
changes greater than 10 percent. As Table 1 shows, 
these development epochs occurred between re­
leases 9 and 10, releases 14 and 15, and releases 30 
and 31. We designate them as early, mid, or late, de­
pending on when they occurred in the evolution of 
the product.

Early evolution epoch:  
Complexity begins to surface
The average XS increased sharply from 18 to 46 

percent between the 9th and 10th releases. During 
this time, the release notes indicate the addition of 
new functionality with respect to new plot types 
and changes to the combination plot framework. 
These included

adding capability for an area chart, a horizon­
tal 3D bar chart, a Gantt chart, and a ther­
mometer chart;
reworking combination plots to provide a sim­
pler framework; and
restructuring code to facilitate combining cat­
egory plots.

This epoch represents one of the few times during 
the evolution of JFreeChart when the code base’s 
size decreased substantially.

In release 9 and earlier, the code for the demo 
application was packaged in the high-level design 
hierarchy. The demo code in release 9 was nearly 
28 KNI (28,000 bytecode instructions). Beginning 
with release 10, the demo code resided in a separate 
jar, resulting in a relative decrease in the code base’s 
size, from 94 KNI to 64 KNI. Although the cumu­
lative XS grew substantially between these releases 
(as Figure 3 and Table 1 show), we must interpret 
the magnitude of this increase with caution because 
the code base’s size concomitantly underwent a sub­
stantial decrease. The change in the relative average 
XS, therefore, might appear exceedingly inflated be­
cause of the code base’s size reduction. Without the 
decrease in this size, the cumulative XS of 28,941 
NI in release 9 would correspond to an average XS 
of approximately 31 percent, which would still be a 
substantial increase in XS.

As a general guideline, Structure 101 recom­
mends keeping the complexity of packages to 60 
dependencies, because having fat packages, classes, 
or methods would defeat the purpose of having a 
simple acyclic package structure. (We aren’t trying 
to establish specific thresholds for fat, tangles, or 
XS that define what complex means. Rather, our 

■

■

■

Table 1
Development epochs with large changes in excessive structural complexity (XS)

Major change period Release number Version number Release date Average XS (%) Cumulative XS (NI*)

Early
9 0.8.1 4/5/02 18 16,649

10 0.9.0 6/7/02 46 28,941

Mid
14 0.9.4 10/18/02 54 44,584

15 0.9.5 2/6/03 30 30,148

Late
30 0.9.20 6/7/04 44 82,451

31 0.9.21 9/10/04 33 64,105

* NI is the number of bytecode instructions.
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Figure 4. Sources  
of XS contribution 
in the early XS change 
epoch: (a) release 9  
and (b) release 10.
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goal is to establish an evolutionary pattern on the 
basis of one complexity measure.) Although nei­
ther release 9 nor 10 contained items that exceeded 
the fat at the design level, fat leaf packages were a 
substantial problem in both releases. In fact, they 
were the greatest contributors to the XS (see Figure 
4). In both versions, fat leaf packages contributed 
90 percent of the total XS, whereas design tangles 
contributed 8 percent in release 9 and contributed 
6 percent in release 10. During this early develop­
mental period, fat methods also contributed to the 
XS. Release 9 had seven excessively complex items, 
four of which were fat methods. In release 10, fat 
methods accounted for six of the top 10 excessively 
complex items.

Mid-evolution epoch:  
Complexity begins to migrate
The release notes indicate major changes to the 
JFreeChart API in release 15. These changes in­
cluded substantial architectural restructuring and 
the addition of new functionality. The structural 
changes included

adding many new interfaces and modifying ex­
isting ones;
creating separate packages for the axes (com. 
jrefinery.chart.axis), plots (com.jrefinery.chart. 
plot), and renderers (com.jrefinery.chart.renderer);
moving responsibilities for category distribu­
tion and control of gridlines;
adding new renderers for xy plots; and
adding new classes, including ContourPlot and 
MovingAverage.

Additionally, the JFreeChart developers added to 
the functionality of the application by introduc­
ing support for features such as secondary axes, 
data sets, and renderers; support for reading pie 
data sets and category data sets; improvements to 
the legend; and modifications to the Gantt chart 
displays.

This substantial architectural design restruc­
turing led to a decrease in average XS from 54 
percent in release 14 to 30 percent in release 
15. Moreover, the XS distribution profile varied 
greatly between the two versions. As Figure 5 
shows, fat leaf packages contributed 91 percent 
of the total XS in release 14. In release 15, the 
developers substantially reorganized the fat leaf 
packages, which reduced the XS contribution 
from fat leaf packages to 22 percent of the total 
XS. Interestingly, the reduction of fat in release 
15 correspondingly introduced additional XS into 
higher levels of the design hierarchy, with design- 

■

■

■

■

■

level tangles now comprising 67 percent of the to­
tal XS.

Late evolution epoch: Migration continues
Although the release notes accompanying release 31 
indicated no major changes, the few changes made 
succeeded in reducing the average XS from 44 to 
33 percent between releases 30 and 31, thanks to 
package splitting. The developers split the org.jfree.
data and org.jfree.chart.renderer packages into 
subpackages for the category and xy charts. Aside 
from the creation of subpackages, there were only 
a few minor changes, but these seemingly minor 
changes nevertheless impacted the XS distribu­
tion profile between the two versions, as Figure 
6 shows. In release 30, fat leaf packages contrib­
uted 24 percent of the total XS. Interestingly, the 
developers totally eliminated fat leaf packages in 
release 31, which largely explains the reduction in 
XS between these two releases. In release 30, de­
sign-level tangles contributed 52 percent of the to­
tal XS, whereas in release 31 they contributed 69 
percent of the total XS. This late evolution epoch 
once again demonstrates that design restructur­
ing is necessary to reduce the size of excessively 
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Figure 5. Breakdown of XS contribution in the mid XS change epoch: 
(a) release 14 and (b) release 15.
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Figure 6. Breakdown  
of XS contribution in the 
late evolution phase: 
(a) release 30 and (b) 
release 31.
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large fat leaf packages. As a consequence of code- 
refactoring efforts, the complexity moves to the de­
sign level, with cyclic dependencies contributing a 
larger proportion of the total XS.

Pattern of shifting  
structural complexity
To further examine the phenomenon of shifting 
structural complexity, we examined two additional 
open source applications: Findbugs and Hibernate. 
Findbugs is a static analysis tool for identifying 
bugs in Java programs. The Hibernate application 
supports the development of persistent classes fol­
lowing an object-oriented idiom.

Figures 7 and 8 show the results. With the Find­
bugs releases, we observed a complexity-shifting 
pattern similar to that of JFreeChart. Namely, 
as overall excess fat decreased, there was a con­
comitant increase in tangles introduced at the de­
sign level. As Figure 7 shows, this shift occurred 

between releases 9 and 13. In release 9, fat leaf 
packages contributed 75 percent of the total XS, 
whereas tangles contributed only 2 percent of the 
total XS. There was a substantial shift in structural 
complexity over the next five releases: the XS con­
tribution from fat decreased from 75 to 57 percent, 
and the percentage of tangles rose from 2 to 18 
percent of the total XS. Unlike JFreeChart, where 
the average XS value decreased during major com­
plexity shifts, in Findbugs the overall average XS 
metric value remained relatively constant (at about 
57 to 62 percent) during this time frame.

We also observed significant shifts in the dis­
tribution of XS in Hibernate. However, in this 
case, the pattern of shifting complexity differed 
from that of JFreeChart and Findbugs. As Figure 
8 shows, we observed large shifts in complexity 
between versions 1.0.0 and 1.2.5 of Hibernate, 
and also between versions 2.1.8 and 3.0.0. Dur­
ing both of these development periods, there was a 
substantial reduction in tangles, whereas excessive 
fat accumulated in both the design and leaf pack­
age levels.

T he Findbugs and Hibernate applications 
provide further evidence that XS shifts 
during software evolution, but the exact 

pattern may vary from one application to another. 
In JFreeChart and Findbugs, first code became 
excessively complex, requiring refactoring efforts. 
Refactoring reduced complexity at the local level 
(for example, within leaf packages and methods) 
but shifted the complexity to a higher level in the 
design hierarchy. In Hibernate, on the other hand, 
XS originated at a higher level in the design hi­
erarchy, and design restructuring efforts shifted 
complexity to the lower-level leaf packages. It isn’t 
clear how much of this shifting nature of complex­
ity is due to the lack of focus on high-level design 
or architecture early in the development life cycle 
of open source systems; the high-level design con­
tinually emerges with the code-level design. We in­
tend to study this in our future research.
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