
feature

66	 I E E E S o f t w a r e P u b l i s h e d b y t h e I E E E C o m p u t e r S o c i e t y � 0 74 0 - 74 5 9 / 0 8 / $ 2 5 . 0 0 © 2 0 0 8 I E E E

s t r uc t ur a l c omp le x i t y

Structural Epochs
in the Complexity
of Software over Time

Raghvinder S. Sangwan, Pamela Vercellone-Smith, and Phillip A. Laplante,
Pennsylvania State University

As software products
evolve, complexity
shifts from lower
to higher structural
levels, or vice-versa.
Managing this
complexity could
require periodic
major restructuring
of software
applications.

S
oftware’s structural complexity depends on the code base’s hierarchical organiza­
tion, beginning at the method level and migrating up through the class, package,
and component levels. This complexity also depends on the nature of the depen­
dencies that bind the different software elements together. In and of itself, struc­

tural complexity is not necessarily a problem. In fact, most large systems tend to be highly
complex. John McGregor offers an interesting distinction between complex and complicated
systems.1 Complexity may be inherent in the problem domain and, therefore, may require

a complex solution. Such a solution might require
time to understand because of the many interact­
ing parts, but it has a rational structure that is
understandable. A complicated solution, on the
other hand, is difficult to understand and analyze.
Clearly, designers must avoid complicated solu­
tions and properly manage those that are complex.
Otherwise, excessive structural complexity (XS)
can become increasingly problematic for the ongo­
ing development, testing, maintenance, and reuse
of software.

Using a new complexity measurement frame­
work called Structure 101 (www.headwaysoftware.
com/products/structure101/index.php), we conduc­
ted a case study to track the structural complexity of
three open source software products as they evolved
through their different releases. Our analysis shows
that as software products evolve, complexity shifts
from lower to higher structural levels, or vice-versa.
Refactoring efforts can reduce complexity at lower
levels (for example, within leaf packages or meth­
ods), but they shift complexity to higher levels in
the design hierarchy. Managing complexity at these

higher levels requires design restructuring or archi­
tecture reengineering. This cycle of shifting com­
plexity can lead to points of excessive complexity
in a software product, called epochs. If this pattern
holds true for most software products, then mere
refactoring at the code level might not be sufficient
to effectively manage structural complexity in soft­
ware. Periodic major restructuring of software ap­
plications at either the design or architectural level
could be necessary.

Traditional complexity metrics
Complexity’s relative impact varies depending on
the abstraction level in the design hierarchy. For
example, cyclic dependencies between software
packages and components have a greater impact
than excessively complex code at the method level,
because a change in one package or component
can adversely affect all dependent packages or
components.

At the method level, designers assess a software
system’s structural complexity (also known as al­
gorithmic complexity) by measuring its cyclomatic

Authorized licensed use limited to: University of London: Online Library. Downloaded on April 04,2022 at 20:53:39 UTC from IEEE Xplore. Restrictions apply.

	 July/August 2008 I E E E S o f t w a r e � 67

complexity,2 which is the number of possible exe­
cution paths through the body of code. The higher
the value of cyclomatic complexity, the more com­
plex the method code.

Designers assess structural complexity in a soft­
ware system at higher abstraction levels such as a
class, package, or component level by measuring
coupling and cohesion metrics.3,4 Excessively com­
plex systems tend to have high coupling and low
cohesion. High coupling implies many interacting
parts forming a dependency graph with several
nodes (representing software components, pack­
ages, or classes) and edges (representing relation­
ships between software components, packages, or
classes). Ideally, the coupling, measured as afferent
(incoming dependencies) and efferent (outgoing
dependencies), should be low, and the dependency
graph should be acyclic.5 Cycles in a dependency
graph, especially large ones, form tangles, where
the code becomes harder to develop, understand,
maintain, and test. Low cohesion implies that parts
within the system have many unrelated responsibili­
ties. Designers assess cohesion by measuring rela­
tional cohesion,5 which should be high.

These traditional metrics for cyclomatic com­
plexity, coupling, and cohesion are not practical
for quantitatively comparing complexity between
different applications.6 However, there are other
techniques that are more suitable for performing
such comparisons as well as for comparing com­
plexity between different releases of the same ap­
plication type.7

Structure 101
measurement framework
When working with large, complex code bases,
traditional object-oriented metrics, such as those
just described, offer only a limited snapshot of
system complexity. They lack the capacity to vi­
sualize the impact of dependencies on emerging
designs, particularly when these dependencies
are rolled up through the structural hierarchy.
(“Rolling up” means determining the complex­
ity at a higher level in the structural hierarchy of
a code base by recursively aggregating the com­
plexities of its lower-level constituent parts. For
instance, the complexity of a program can be
determined from the complexity of its constitu­
ent packages, whose complexity in turn can be
determined from their constituent subpackages,
and so forth.) A simpler and definitive approach
is necessary to compare two software programs’
complexity, whether they are different programs
or different versions of the same program.

The Structure 101 measurement framework

provides a comprehensive view of structural com­
plexity within a software system. This measure­
ment framework is based on two aspects of XS:
tangles and fat (see the “Measuring Excessive
Complexity” sidebar). Tangles are cyclic dependen­
cies between packages. Robert Martin’s acyclic de-
pendency principle dictates that “the dependency
structure between packages must be a Directed
Acyclic Graph (DAG). That is, there must be no cy­
cles in the dependency structure.”5 Although cyclic
dependencies between classes or methods within
a package are often unavoidable, such dependen­
cies between packages lead to highly coupled code
that’s difficult to maintain and extend because all
the packages involved in a tangle are integrally tied
to one another and affected by any changes intro­
duced within the group. Fat measurement gives a
sense of how easy it is to understand a given code
base. Excessive dependencies among packages,
subpackages, and classes, and excessive cyclomatic
complexity within methods make the code harder
to understand, test, and maintain.

The concepts used in the measurement of XS
are based on Thomas McCabe’s cyclomatic com­
plexity,2 as well as dependencies (including cyclical
dependencies) between software elements. Software
complexity studies have widely used these tradi­
tional metrics to characterize cohesion and coupling
within a system. The only difference in the Struc­
ture 101 approach is how these complexity metrics
are rolled up in the code base hierarchy to give an
overall picture of how complex a particular system
is. The roll-up mechanism calculates the complexity
of an element higher up in the hierarchy by recur­
sively aggregating the complexity of its constituent
parts (see the sidebar).

Evolution in open source software
With the growing popularity of open source soft­
ware, there is increasing interest in evaluating the
development practices within open source com­
munities. In the open source software development
model, the project requirements are often loosely
defined, continue to evolve over the lifetime of the
application, and are driven by the interests of their
user-developer communities.8 As a consequence,
high-level package design continually emerges
along with the code-level design. As Lehman’s laws
predict, such emerging designs will become in­
creasingly more complex over the software’s evolu­
tion unless there are efforts to reduce or maintain
it. Stephen Schach and his colleagues have observed
this phenomenon, especially in the Linux operating
system.9 Neil Smith, Andrea Capiluppi, and Juan
Ramil have observed it in 25 open source soft­

The Structure 101
measurement
framework
provides a

comprehensive
view of

structural
complexity within

a software
system.

Authorized licensed use limited to: University of London: Online Library. Downloaded on April 04,2022 at 20:53:39 UTC from IEEE Xplore. Restrictions apply.

Text Box
not forming a circle

68	 I E E E S o f t w a r e w w w . c o m p u t e r . o r g / s o f t w a r e

The Structure 101 complexity measurement framework (www.
headwaysoftware.com/products/structure101/index.php)
calculates the excessive structural complexity (XS) of an ele-
ment (such as a method, class, or package) within a soft-
ware system by multiplying the degree of violation (a value
normalized between 0 and 1) due to tangles and fat by its
size. To calculate the degree of violation due to tangles (cyclic
dependencies between packages), Structure 101 identifies the
minimal feedback set (MFS), the minimum set of edges that
must be removed from a dependency graph of a software
system to eliminate cyclic dependencies. The framework di-
vides the number of code-level references in the MFS by the
total number of dependencies in the graph, and expresses
this quotient as the degree of tangle violation. For example,
the MFS for the graph shown in Figure A is 3. The number of
code-level references in the MFS is 28(22 + 3 + 3). Therefore,
the degree of tangle violation is (0.062)[28/(22 + 329 + 3 +
8 + 84 + 3)].

Structure 101 measures fat differently at each level of the
code base hierarchy. The fat metric gives a sense of how
easy it is to understand a given code base. At the higher-level
packages (those containing subpackages), the framework cal-
culates fat as the number of dependencies. For example, the
parent of the graph in Figure A has a fat of 6 (simply count
the edges and ignore the code-level references). At lower-
level packages (those containing classes), the framework
computes fat by counting the total number of dependencies
between classes within the given package. To calculate the
fat of a class, Structure 101 uses a dependency graph for the
methods and attributes within the class to count the number
of dependencies. Finally, the framework calculates a method’s
fat by using Thomas McCabe’s cyclomatic complexity.1

The degree of fat violation depends on the extent to which
fat exceeds the threshold. Structure 101 then converts the de-
gree of violation to a normalized XS value (between 0 and 1),
using the following equation:

max{0, [(value – threshold)/value]}

The framework then multiplies the degree of tangle vi
olation and the degree of fat violation by the item’s size,
which the framework measures according to the set of
rules in Table A.

Finally, the framework calculates cumulative XS by re-
cursively aggregating all the local XS values for a particular
item’s descendants. The average XS is the quotient of the cu-
mulative XS and the size, and it reflects the percentage of the
code base that is excessively complex.

Reference
	 1.	 T. McCabe, “A Complexity Measure,” IEEE Trans. Software Engineering,

Dec. 1976, pp. 308–320.

Measuring Excessive Complexity

Table A
Set of rules used by Structure 101 to determine
the size of each element in a software system

Element Size

Field 1

Method 1 + NI*

Class (and inner classes) 1 + sum of sizes of all contained fields and methods

Leaf-level package Sum of sizes of all contained classes

Design-level package Sum of sizes of all contained packages

* NI is the number of bytecode instructions in the method body.

Event

32922

Chart

33
848

Annotations User
interface

Figure A. Graph illustrating the calculation of the
minimal feedback set (MFS). Edges represent
dependencies. Numbers on edges represent code-level
references. Dotted edges represent the edges in the
MFS.

Authorized licensed use limited to: University of London: Online Library. Downloaded on April 04,2022 at 20:53:39 UTC from IEEE Xplore. Restrictions apply.

	 July/August 2008 I E E E S o f t w a r e � 69

ware systems.10 We applied the new complexity-
monitoring technique to track structural complex­
ity in software applications as they evolved through
their different releases.

Case Study: Structural
complexity in JFreeChart
To begin our study, we conjectured that a high
proportion of structural complexity in the early re­
leases would be found at the application-code level,
which would then progressively migrate to higher-
level design and architectural elements in subse­
quent releases. This pattern would then repeat itself
throughout the evolution of a software product, re­
quiring periodic maintenance efforts such as code
refactoring, design restructuring, or architecture
renovation (Figure 1). We presumed that this phe­
nomenon would particularly hold for open source
applications, in which a high-level design emerges
with the code-level design.

We explored this phenomenon for 38 different
releases of JFreeChart, an open source charting ap­
plication written in Java. JFreeChart has been under
active development for more than six years and has a
well-documented history, with 38 versions available
in the SourceForge repository (http://SourceForge.
net). Because of these characteristics, several evo­
lutionary studies have used JFreeChart.11–13 In
addition to studying the appropriate metrics, we
reviewed the developer logs. Confirming our em­
pirical evidence, developer release notes specifically
indicate that package-splitting activities occurred
whenever total XS decreased significantly. These
package-splitting activities greatly reduced fat, but
the packages remained integrally tied together, thus
introducing cyclic dependencies at the design level.
These observations support our hypothesis.

The distribution of each release of JFreeChart
includes several jar files, but we focused on examin­
ing the complexity introduced during the evolution
of the core graphics library (jfreechart.jar and jcom­
mon.jar) and not any complexity from peripheral
jar files (junit.jar, servlet.jar, and gnujaxp.jar). Fig­
ure 2 shows the average XS values per release ob­
tained using only the core application jars.

For each of the 38 release versions of JFreeChart,
Figure 3 shows the relative contribution of fat and
tangles to the XS, broken down by design-level
scope. Interestingly, early in JFreeChart’s devel­
opment, fat leaf packages were the greatest con­
tributors to XS. With the ongoing development of
JFreeChart, the XS increasingly moved to higher
levels in the design hierarchy. This was particularly
apparent during the first major restructuring ef­
fort, which occurred between releases 13 and 15.

Co
m

pl
ex

ity

Time

Code-
refactoring
initiative A

Code-
refactoring
initiative B

Design-
restructuring

initiative
Code-

refacturing
initiative C

Figure 1. Idealized evolutionary pattern in which complexity grows
until code refactoring, design restructuring, or architectural renovation
is necessary. (The gold line represents idealized growth of source lines
of code over time.)

2 3 4 5 6 7 8 9 373634

100

90

80

70

60

50

40

30

20

10

0

Av
er

ag
e

XS
 (%

)

101 1213141516171819

Release number
2011 22232425262728293021 323331 35 38

Figure 2. Average excessive structural complexity (XS) per release
in JFreeChart.

2 3 4 5 6 7 8 9 373634

100

90

80

70

60

50

40

30

20

10

0

Av
er

ag
e

XS
 (%

)

101 1213141516171819

Release number
2011 22232425262728293021 323331 35 38

Fat (design)

Fat (method)Fat (leaf)

Tangled (design)Average XS

Fat (class)

Figure 3. XS breakdown related to metric and design-level scope
in JFreeChart releases.

Authorized licensed use limited to: University of London: Online Library. Downloaded on April 04,2022 at 20:53:39 UTC from IEEE Xplore. Restrictions apply.

Text Box
based on experience

70	 I E E E S o f t w a r e w w w . c o m p u t e r . o r g / s o f t w a r e

Because of this restructuring effort, overall XS de­
creased by 24 percent. This decrease was largely
due to the reduction of fat leaf packages. However,
as a consequence of the refactoring efforts to reduce
fat packages, cyclic dependencies crept in, creating
tangles in the design-level hierarchy. This permu­
tation occurred again 16 months later, when the
JFreeChart developers restructured release 30 to
reduce fat leaf packages, which had grown exces­
sively large. The complexity moved to the design
level in release 31, with an increasing number of
cyclic dependencies present in the high-level design
hierarchy.

We selected for further study any consecutive
releases of JFreeChart exhibiting more than a 10
percent increase or decrease in average XS. Among
the 38 releases of JFreeChart, we identified three
development periods, or epochs, that exhibited XS
changes greater than 10 percent. As Table 1 shows,
these development epochs occurred between re­
leases 9 and 10, releases 14 and 15, and releases 30
and 31. We designate them as early, mid, or late, de­
pending on when they occurred in the evolution of
the product.

Early evolution epoch:
Complexity begins to surface
The average XS increased sharply from 18 to 46

percent between the 9th and 10th releases. During
this time, the release notes indicate the addition of
new functionality with respect to new plot types
and changes to the combination plot framework.
These included

adding capability for an area chart, a horizon­
tal 3D bar chart, a Gantt chart, and a ther­
mometer chart;
reworking combination plots to provide a sim­
pler framework; and
restructuring code to facilitate combining cat­
egory plots.

This epoch represents one of the few times during
the evolution of JFreeChart when the code base’s
size decreased substantially.

In release 9 and earlier, the code for the demo
application was packaged in the high-level design
hierarchy. The demo code in release 9 was nearly
28 KNI (28,000 bytecode instructions). Beginning
with release 10, the demo code resided in a separate
jar, resulting in a relative decrease in the code base’s
size, from 94 KNI to 64 KNI. Although the cumu­
lative XS grew substantially between these releases
(as Figure 3 and Table 1 show), we must interpret
the magnitude of this increase with caution because
the code base’s size concomitantly underwent a sub­
stantial decrease. The change in the relative average
XS, therefore, might appear exceedingly inflated be­
cause of the code base’s size reduction. Without the
decrease in this size, the cumulative XS of 28,941
NI in release 9 would correspond to an average XS
of approximately 31 percent, which would still be a
substantial increase in XS.

As a general guideline, Structure 101 recom­
mends keeping the complexity of packages to 60
dependencies, because having fat packages, classes,
or methods would defeat the purpose of having a
simple acyclic package structure. (We aren’t trying
to establish specific thresholds for fat, tangles, or
XS that define what complex means. Rather, our

■

■

■

Table 1
Development epochs with large changes in excessive structural complexity (XS)

Major change period Release number Version number Release date Average XS (%) Cumulative XS (NI*)

Early
9 0.8.1 4/5/02 18 16,649

10 0.9.0 6/7/02 46 28,941

Mid
14 0.9.4 10/18/02 54 44,584

15 0.9.5 2/6/03 30 30,148

Late
30 0.9.20 6/7/04 44 82,451

31 0.9.21 9/10/04 33 64,105

* NI is the number of bytecode instructions.

Tangled
(design)

Fat (method)

Fat
(leaf package)

Fat
(leaf package)

Fat (method)

Fat (class)

Tangled
(design)

(a) (b)

Figure 4. Sources
of XS contribution
in the early XS change
epoch: (a) release 9
and (b) release 10.

Authorized licensed use limited to: University of London: Online Library. Downloaded on April 04,2022 at 20:53:39 UTC from IEEE Xplore. Restrictions apply.

Text Box
simultaneously

	 July/August 2008 I E E E S o f t w a r e � 71

goal is to establish an evolutionary pattern on the
basis of one complexity measure.) Although nei­
ther release 9 nor 10 contained items that exceeded
the fat at the design level, fat leaf packages were a
substantial problem in both releases. In fact, they
were the greatest contributors to the XS (see Figure
4). In both versions, fat leaf packages contributed
90 percent of the total XS, whereas design tangles
contributed 8 percent in release 9 and contributed
6 percent in release 10. During this early develop­
mental period, fat methods also contributed to the
XS. Release 9 had seven excessively complex items,
four of which were fat methods. In release 10, fat
methods accounted for six of the top 10 excessively
complex items.

Mid-evolution epoch:
Complexity begins to migrate
The release notes indicate major changes to the
JFreeChart API in release 15. These changes in­
cluded substantial architectural restructuring and
the addition of new functionality. The structural
changes included

adding many new interfaces and modifying ex­
isting ones;
creating separate packages for the axes (com.
jrefinery.chart.axis), plots (com.jrefinery.chart.
plot), and renderers (com.jrefinery.chart.renderer);
moving responsibilities for category distribu­
tion and control of gridlines;
adding new renderers for xy plots; and
adding new classes, including ContourPlot and
MovingAverage.

Additionally, the JFreeChart developers added to
the functionality of the application by introduc­
ing support for features such as secondary axes,
data sets, and renderers; support for reading pie
data sets and category data sets; improvements to
the legend; and modifications to the Gantt chart
displays.

This substantial architectural design restruc­
turing led to a decrease in average XS from 54
percent in release 14 to 30 percent in release
15. Moreover, the XS distribution profile varied
greatly between the two versions. As Figure 5
shows, fat leaf packages contributed 91 percent
of the total XS in release 14. In release 15, the
developers substantially reorganized the fat leaf
packages, which reduced the XS contribution
from fat leaf packages to 22 percent of the total
XS. Interestingly, the reduction of fat in release
15 correspondingly introduced additional XS into
higher levels of the design hierarchy, with design-

■

■

■

■

■

level tangles now comprising 67 percent of the to­
tal XS.

Late evolution epoch: Migration continues
Although the release notes accompanying release 31
indicated no major changes, the few changes made
succeeded in reducing the average XS from 44 to
33 percent between releases 30 and 31, thanks to
package splitting. The developers split the org.jfree.
data and org.jfree.chart.renderer packages into
subpackages for the category and xy charts. Aside
from the creation of subpackages, there were only
a few minor changes, but these seemingly minor
changes nevertheless impacted the XS distribu­
tion profile between the two versions, as Figure
6 shows. In release 30, fat leaf packages contrib­
uted 24 percent of the total XS. Interestingly, the
developers totally eliminated fat leaf packages in
release 31, which largely explains the reduction in
XS between these two releases. In release 30, de­
sign-level tangles contributed 52 percent of the to­
tal XS, whereas in release 31 they contributed 69
percent of the total XS. This late evolution epoch
once again demonstrates that design restructur­
ing is necessary to reduce the size of excessively

Fat
(leaf package)

Tangled
(design)

Fat
(leaf

package)

Fat (method)

Fat (class)

Tangled
(design)

Fat (method)

Fat (class)

(a) (b)

Figure 5. Breakdown of XS contribution in the mid XS change epoch:
(a) release 14 and (b) release 15.

Tangled
(design)Fat

(leaf
package)

Fat (method)

Fat (class)

Tangled
(design)

Fat (method)

Fat (class)

(a) (b)

Figure 6. Breakdown
of XS contribution in the
late evolution phase:
(a) release 30 and (b)
release 31.

Authorized licensed use limited to: University of London: Online Library. Downloaded on April 04,2022 at 20:53:39 UTC from IEEE Xplore. Restrictions apply.

72	 I E E E S o f t w a r e w w w . c o m p u t e r . o r g / s o f t w a r e

large fat leaf packages. As a consequence of code-
refactoring efforts, the complexity moves to the de­
sign level, with cyclic dependencies contributing a
larger proportion of the total XS.

Pattern of shifting
structural complexity
To further examine the phenomenon of shifting
structural complexity, we examined two additional
open source applications: Findbugs and Hibernate.
Findbugs is a static analysis tool for identifying
bugs in Java programs. The Hibernate application
supports the development of persistent classes fol­
lowing an object-oriented idiom.

Figures 7 and 8 show the results. With the Find­
bugs releases, we observed a complexity-shifting
pattern similar to that of JFreeChart. Namely,
as overall excess fat decreased, there was a con­
comitant increase in tangles introduced at the de­
sign level. As Figure 7 shows, this shift occurred

between releases 9 and 13. In release 9, fat leaf
packages contributed 75 percent of the total XS,
whereas tangles contributed only 2 percent of the
total XS. There was a substantial shift in structural
complexity over the next five releases: the XS con­
tribution from fat decreased from 75 to 57 percent,
and the percentage of tangles rose from 2 to 18
percent of the total XS. Unlike JFreeChart, where
the average XS value decreased during major com­
plexity shifts, in Findbugs the overall average XS
metric value remained relatively constant (at about
57 to 62 percent) during this time frame.

We also observed significant shifts in the dis­
tribution of XS in Hibernate. However, in this
case, the pattern of shifting complexity differed
from that of JFreeChart and Findbugs. As Figure
8 shows, we observed large shifts in complexity
between versions 1.0.0 and 1.2.5 of Hibernate,
and also between versions 2.1.8 and 3.0.0. Dur­
ing both of these development periods, there was a
substantial reduction in tangles, whereas excessive
fat accumulated in both the design and leaf pack­
age levels.

T he Findbugs and Hibernate applications
provide further evidence that XS shifts
during software evolution, but the exact

pattern may vary from one application to another.
In JFreeChart and Findbugs, first code became
excessively complex, requiring refactoring efforts.
Refactoring reduced complexity at the local level
(for example, within leaf packages and methods)
but shifted the complexity to a higher level in the
design hierarchy. In Hibernate, on the other hand,
XS originated at a higher level in the design hi­
erarchy, and design restructuring efforts shifted
complexity to the lower-level leaf packages. It isn’t
clear how much of this shifting nature of complex­
ity is due to the lack of focus on high-level design
or architecture early in the development life cycle
of open source systems; the high-level design con­
tinually emerges with the code-level design. We in­
tend to study this in our future research.

References
	 1.	 J.D. McGregor, “Complexity, Its in the Mind of the

Beholder,” J. Object Technology, Jan./Feb. 2006, pp.
31–37; www.jot.fm/issues/issue_2006_01/column3.

	 2.	 T. McCabe, “A Complexity Measure,” IEEE Trans.
Software Engineering, Dec 1976, pp. 308–320.

	 3.	 W.P. Stevens, G.J. Myers, and L.L. Constantine, “Struc­
tured Design,” IBM Systems J., vol. 13, no. 2, 1974, pp.
115–119.

	 4.	 S.R. Chidamber, and C.F. Kemerer, “A Metrics Suite
for Object Oriented Design,” IEEE Trans. Software
Engineering, June 1994, pp. 476–493.

100

90

80

70

60

50

40

30

20

10

0

Pe
er

ce
nt

 X
S

2 3 4 5 6 7 8 9 101 12 13 14 15 16 17 18 19
Version

2011 22 2321 24

Fat (design)

Fat (method)Fat (leaf)

Tangled (design)Average XS

Fat (class)

Figure 7. XS in the Findbugs open source software application.

100

90

80

70

60

50

40

30

20

10

0

Pe
er

ce
nt

 X
S

0.9.8 0.9.13 1.0.0 1.2.5 2.1.1
Version

2.1.6 2.1.7 2.1.8 3.0.00.9.3 3.2.4

Fat (design)

Fat (method)Fat (leaf)

Tangled (design)Average XS

Fat (class)

Figure 8. XS in
Hibernate open source
software application.

Authorized licensed use limited to: University of London: Online Library. Downloaded on April 04,2022 at 20:53:39 UTC from IEEE Xplore. Restrictions apply.

	 July/August 2008 I E E E S o f t w a r e � 73

	 5.	 R.C. Martin, Agile Software Development, Prentice
Hall, 2003.

	 6.	 M. Larsson and P.A. Laplante, “On the Complexity of
Design in Imaging Software,” Proc. 11th IEEE Int’l
Conf. Engineering of Complex Computer Systems
(ICECCS 06), IEEE CS Press, 2006, pp. 37–42.

	 7.	 R. Sangwan, P. Vercellone-Smith, and P. Laplante.
“Measuring the Complexity of Design in Real-Time Im­
aging Software,” Proc. 11th Real-Time Imaging Conf.,
SPIE, 2007, vol. 6486, pp. 1–6.

	 8.	 W. Scacchi, “Understanding Open Source Software
Evolution,” Software Evolution, N.H. Madhavji et al.,
eds., John Wiley & Sons, 2004.

	 9.	 S.R. Schach et al., “Maintainability of the Linux Ker­
nel,” IEE Proc.—Software, vol. 149, no. 1, 2002, pp.
18–23.

	10.	 N. Smith, A. Capiluppi, and J.F. Ramil, “A Study of
Open Source Software Evolution Data Using Qualita­
tive Simulation,” Software Process Improvement and
Practice, vol. 10, no. 3, 2005, pp. 287–300.

	11.	 Y. Crespo et al., “Language Independent Metrics Sup­
port towards Refactoring Inference,” Proc. 9th ECOOP
Workshop Quantitative Approaches in Object-Oriented
Software Engineering, Springer, 2005, pp. 18–29.

	12.	 Z. Xing and E. Stroulia, “Towards Experience-Based
Mentoring of Evolutionary Development,” Proc. 21st
IEEE Int’l Conf. Software Maintenance (ICSM 05),
IEEE CS Press, 2005, pp. 621–624.

	13.	 Z. Xing and E. Stroulia, “Understanding the Evolu­
tion and Co-evolution of Classes in Object-Oriented
Systems,” Int’l J. Software Engineering and Knowledge
Engineering, vol. 16, no. 1, 2006, pp. 23–52.

For more information on this or any other computing topic, please visit our
Digital Library at www.computer.org/csdl.

About the Authors
Raghvinder S. Sangwan is an
assistant professor of information science in
the Engineering Division of the Great Valley
School of Graduate Professional Studies at the
Pennsylvania State University. His research
interests include analysis, design, and develop-
ment of software systems; their architecture;
and automatic and semiautomatic approaches
to assessing their design and code quality.

He received his PhD in computer and information sciences from Temple
University. Contact him at rsangwan@psu.edu.

Pamela Vercellone-Smith is a
research associate in the Engineering Divi-
sion of the Great Valley School of Graduate
Professional Studies at the Pennsylvania State
University. Her research interests include
software design complexity and open source
software systems. She received her PhD in
microbiology from the University of Delaware.
She is a member of the ACM and the American
Society for Microbiology. Contact her at pav115@psu.edu.

Phillip A. Laplante is a professor
of software engineering in the Engineering
Division of the Great Valley School of Graduate
Professional Studies at the Pennsylvania State
University. His research interests include soft-
ware project management, the role of the CIO,
and open source software systems. He received
his PhD in computer science from the Stevens
Institute of Technology. He is a Fellow of the

IEEE and is currently a member of the IEEE Computer Society’s Board of
Governors. Contact him at plaplante@psu.edu.

a d v e r t i s e r i n d e x
J u ly / A u g u s t 2 0 0 8

Advertiser� Page Number

Agile 2008� Cover 3

ESRI, Inc.� 11

John Wiley & Sons, Inc.� Cover 2

LinuxWorld 2008� 1

Seapine Software, Inc.� Cover 4

Advertising Personnel

Marion Delaney
IEEE Media,
Advertising Director
Phone: +1 415 863 4717
Email: md.ieeemedia@

ieee.org

Marian Anderson
Advertising Coordinator
Phone: +1 714 821 8380
Fax: +1 714 821 4010
Email: manderson@

computer.org

Sandy Brown
IEEE Computer Society,
Business Development
Manager
Phone: +1 714 821 8380
Fax: +1 714 821 4010
Email: sb.ieeemedia@

ieee.org

Advertising Sales Representatives

Mid Atlantic
(product/recruitment)
Dawn Becker
Phone:	 +1 732 772 0160
Fax:	 +1 732 772 0164
Email: db.ieeemedia@
ieee.org

New England (product)
Jody Estabrook
Phone:	 +1 978 244 0192
Fax:	 +1 978 244 0103
Email: je.ieeemedia@
ieee.org

New England (recruitment)
John Restchack
Phone:	 +1 212 419 7578
Fax:	 +1 212 419 7589
Email: j.restchack@ieee.org

Connecticut (product)
Stan Greenfield
Phone:	 +1 203 938 2418
Fax:	 +1 203 938 3211
Email: greenco@optonline.
net

Southwest (product)
Steve Loerch
Phone: +1 847 498 4520
Fax: +1 847 498 5911
Email: steve@
didierandbroderick.com

Northwest (product)
Lori Kehoe

Phone:	 +1 650 458 3051
Fax:	 +1 650 458 3052
Email: l.kehoe@ieee.org

Southern CA (product)
Marshall Rubin
Phone:	 +1 818 888 2407
Fax:	 +1 818 888 4907
Email: mr.ieeemedia@
ieee.org

Northwest/Southern CA
(recruitment)
Tim Matteson
Phone:	 +1 310 836 4064
Fax:	 +1 310 836 4067
Email: tm.ieeemedia@
ieee.org

Midwest (product)
Dave Jones
Phone: 	 +1 708 442 5633
Fax:	 +1 708 442 7620
Email: dj.ieeemedia@
ieee.org

Will Hamilton
Phone:	 +1 269 381 2156
Fax:	 +1 269 381 2556
Email: wh.ieeemedia@
ieee.org

Joe DiNardo
Phone:	 +1 440 248 2456
Fax:	 +1 440 248 2594
Email: jd.ieeemedia@
ieee.org

Southeast (recruitment)
Thomas M. Flynn
Phone:	 +1 770 645 2944
Fax:	 +1 770 993 4423
Email: flynntom@
mindspring.com

Midwest/Southwest
(recruitment)
Darcy Giovingo
Phone:	 +1 847 498-4520
Fax:	 +1 847 498-5911
Email: dg.ieeemedia@
ieee.org

Southeast (product)
Bill Holland
Phone:	 +1 770 435 6549
Fax:	 +1 770 435 0243
Email: hollandwfh@
yahoo.com

Japan (recruitment)
Tim Matteson
Phone:	 +1 310 836 4064
Fax:	 +1 310 836 4067
Email: tm.ieeemedia@
ieee.org

Europe (product)
Hilary Turnbull
Phone: +44 1875 825700
Fax:	 +44 1875 825701
Email: impress@
impressmedia.com

Authorized licensed use limited to: University of London: Online Library. Downloaded on April 04,2022 at 20:53:39 UTC from IEEE Xplore. Restrictions apply.

