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Abstract 
The development of complex systems frequently in-

volves extensive work to elicit, document and review 
stakeholder requirements. Stakeholder requirements are 
usually written in unconstrained natural language, which 
is inherently imprecise. During system development, 
problems in stakeholder requirements inevitably propa-
gate to lower levels. This creates unnecessary volatility 
and risk, which impact programme schedule and cost. 
Some experts advocate the use of other notations to in-
crease precision and minimise problems such as ambigui-
ty. However, use of non-textual notations requires trans-
lation of the source requirements, which can introduce 
further errors. There is also a training overhead asso-
ciated with the introduction of new notations. A small set 
of structural rules was developed to address eight com-
mon requirement problems including ambiguity, complex-
ity and vagueness. The ruleset allows all natural lan-
guage requirements to be expressed in one of five simple 
templates. The ruleset was applied whilst extracting aero 
engine control system requirements from an airworthiness 
regulation document. The results of this case study show 
qualitative and quantitative improvements compared with 
a conventional textual requirements specification. 

1. Company background 
Aircraft engine control systems present a significant 

systems engineering challenge: the systems are complex, 
safety-critical and developed in ever-compressed time-
scales. To satisfy aircraft manufacturers’ requirements 
and maintain market position, control systems must pro-
vide increased functionality and maintain the highest le-
vels of dependability. 

Rolls-Royce Control Systems develops Full Authority 
Digital Engine Controllers (FADECs) for civil gas turbine 
engines. The development and operation of FADECs 
present numerous challenges [1] including: operation in 
arduous environments, increased system complexity, ev-
er-greater reliability, improved fault tolerance and the 
need to certify against European and US regulations. A 
typical modern control system has a dual channel design, 
contains thousands of components, over 100,000 lines of 
code and is developed with up to twenty suppliers.  

2. Background to the problem 
Stakeholder requirements are often written by individ-

uals who are not experts in requirements definition. Most 
commonly, stakeholder requirements are written in un-
structured natural language (NL). The flexibility of NL 
makes it an ideal medium for creative expression, such as 
drama, poetry and humour. However, unconstrained use 
of NL is inherently unsuitable for requirements definition 
for a number of reasons. Some of the problems that can 
appear in NL requirement documents are: 

 

• Ambiguity1 (a word or phrase has two or more dif-
ferent meanings). 

• Vagueness (lack of precision, structure and/or de-
tail). 

• Complexity (compound requirements containing 
complex sub-clauses and/or several interrelated 
statements). 

• Omission (missing requirements, particularly re-
quirements to handle unwanted behaviour). 

• Duplication (repetition of requirements that are 
defining the same need). 

• Wordiness (use of an unnecessary number of 
words). 

• Inappropriate implementation (statements of how 
the system should be built, rather than what it 
should do). 

• Untestability (requirements that cannot be proven 
true or false when the system is implemented). 

 

There are other problems that this study does not con-
sider, including conflicting requirements and missing tra-
ceability links. There are two main reasons for their ex-
clusion: firstly these problems are not unique to NL re-
quirements documents, and secondly there are no occur-
rences of these problems in the case study. 

                                                           
1 There are three common forms of ambiguity: lexical, refe-

rential and syntactical [2]. Lexical ambiguity occurs where a 
word or phrase, which has two or more meanings, is used in a 
manner that permits a sentence or phrase to be interpreted in 
more than one way. Referential ambiguity occurs when a word 
or phrase is used that can be referring to two or more things. 
Syntactical ambiguity arises when the order of words allows two 
or more interpretations. 
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To overcome problems associated with NL, some ex-
perts advocate the use of other notations for the specifica-
tion of requirements. These include formal notations such 
a Z [3] and Petri Nets [4] and graphical notations such as 
Unified Modeling Language (UML) [5, 6] and Systems 
Modeling Language (SysML) [7]. There are also numer-
ous scenario-based approaches [summarised in 8], tabular 
approaches such as Table-Driven Requirements [9] and 
ConCERT [10, 11] and pseudocode. 

Advocates of some notations claim that they work for 
requirements at all system levels, whilst others do not 
claim universal applicability. UML and SysML are graph-
ical notations used to describe systems, within which dif-
ferent views can be generated depending on user needs. 
Meanwhile, claims have been made for the effective use 
of scenarios in many different ways and at different sys-
tem levels [8] though not necessarily within an integrated 
framework. 

However, use of any of these non-textual notations of-
ten requires complex translation of the source require-
ments, which can introduce further errors. Such transla-
tion of requirements can serve to create a “language bar-
rier” between developers and stakeholders due to uncons-
cious communication of assumed context. There is also a 
training overhead associated with the introduction of 
many notations. Requirements authors are unlikely to 
seek excessive formality and complex training, and rarely 
do they require a software tool to help them write. 

There are many hundreds of general books on re-
quirements engineering. There are also numerous exam-
ples of published works specifically about how to write 
better requirements. These include two well-known pa-
pers titled “Writing Good Requirements” [12, 13] that 
focus on the characteristics of well-formed requirements 
and the attributes that should be included. There are also 
templates available, such as VOLERE [14] and SL-07 
[15]. Despite this large body of published material, there 
seems to be little simple, practical advice for the practi-
tioner. 

It was hypothesised that introducing a small set of 
simple requirement structures would be an efficient and 
practical way to enhance the writing of high-level stake-
holder requirements. Previous work in the area of con-
strained natural language includes Simplified Technical 
English [16], Attempto Controlled English (ACE) [17] 
and Event-Condition-Action (ECA) [18]. In ECA, the 
event specifies the signal that triggers the rule and the 
condition is a logical test that (if satisfied) causes the spe-
cified system action. 

The work reported here is principally concerned with 
requirements syntax. Although measures were taken to 
improve the semantics of the requirements, they are not 
described in this paper. There is no claim made that this 
approach is universally applicable to all levels of system 
decomposition. The technique is most suitable to the defi-
nition of high-level stakeholder requirements. 

The remainder of this paper is divided into five sec-
tions. Section 3 describes the Case Study. Section 4 de-
fines the Method used and how it was developed. Section 
5 summarises the Results. Section 6 is a Discussion of the 
findings and section 7 describes Future Work. 

3. Case study 
Certification Specification for Engines (CS-E) [19] de-

fines what must be achieved in order for an aero engine to 
achieve certification. For this study, the section of CS-E 
most applicable to engine control systems (CS-E 50) was 
analysed. CS-E 50 contains a relatively small number of 
requirements, which was a manageable quantity for a case 
study. 

When analysing the structure and content of CS-E, it is 
prudent to consider the history of the document. CS-E has 
evolved from incremental updates to its predecessor Joint 
Airworthiness Requirements for Engines (JAR-E) [20] 
over many years. Repeated updates have resulted in the 
addition of statements to form long paragraphs of prose. 
Many of these paragraphs contain a rich mixture of both 
complex and simple requirements, along with design and 
verification statements and supporting information. Most 
requirements are explicit, but there are also some implicit 
requirements that can be difficult to discover. 

Due to the evolutionary nature of the text, care must be 
taken when interpreting the intent of statements within 
CS-E. Much of the document is written at an abstract lev-
el, relying on lists and explanatory notes to add meaning. 
Engineers use the requirements in CS-E during the design 
of an engine, but most are unlikely to be trained and expe-
rienced in requirements definition. Engineers are likely to 
be most comfortable when presented with a set of unam-
biguous, simple statements in order to validate their own 
work. This will reduce the likelihood of lengthy negotia-
tions or expensive alterations later in an engine pro-
gramme. In addition, if requirements are written well, 
they can be reused on future programmes, with obvious 
cost savings. 

4. Method  
The process and ruleset used during this investigation 

was developed as the work progressed. The participants 
started with a set of loose rules derived from their own 
experiences in systems, safety and requirements engineer-
ing and built on the concepts of ECA. These included 
basic syntactic rules of thumb such as the use of “when” 
for event-driven behaviour, “while” for state-driven beha-
viour and “if-then” statements to handle “failures”. 

The collaborative nature of the work led to incremental 
changes to the ruleset that were tested empirically during 
the ongoing study. Additionally, occasional serendipity 
helped the evolution of the syntactic rules. 

A group of cross-discipline engineers, including the 
company’s CS-E certification expert, analysed the source 
text of CS-E 50 in two phases. In the first phase, each 
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clause of the document was broken into its constituent 
parts. Some sentences were explicit requirements; others 
needed interpretation, but did imply requirements on the 
engine control system. Other statements were determined 
to be design guidance or were clearly informative text. All 
requirements were placed in a spreadsheet to aid manipu-
lation. 

In the second phase, each requirement was rewritten in 
a consistent manner using the syntactic ruleset described 
below. Subsequent iterations were necessary as the ruleset 
evolved. This led to further rewording of requirements 
and to the reclassification of some statements. 

4.1 Generic requirements syntax 
The generic requirement syntax adopted during this 

study is as follows: 

<optional preconditions> <optional trigger> the 
<system name> shall <system response> 

This simple structure forces the requirement author to 
separate the conditions in which the requirement can be 
invoked (preconditions), the event that initiates the re-
quirement (trigger) and the necessary system behaviour 
(system response). Both preconditions and trigger are 
optional, depending on the requirement type, as described 
later in this section. 

The order of the clauses in this syntax is also signifi-
cant, since it follows temporal logic: 

 

• Any preconditions must be satisfied otherwise the 
requirement cannot ever be activated. 

• The trigger must be true for the requirement to be 
“fired”, but only if the preconditions were already 
satisfied. 

• The system is required to achieve the stated sys-
tem response if and only if the preconditions and 
trigger are true. 

 

The generic requirement syntax is specialised into five 
types of requirement (Ubiquitous, Event-driven, Un-
wanted behaviours, State-driven and Optional features), 
which are described in more detail below. 

4.2 Ubiquitous requirements 
A ubiquitous requirement has no preconditions or trig-

ger. It is not invoked by an event detected at the system 
boundary or in response to a defined system state, but is 
always active. The general form of a ubiquitous require-
ment is: 

The <system name> shall <system response> 

For example: “The control system shall prevent engine 
overspeed”. This is a system behaviour that must be ac-
tive at all times; hence this is a ubiquitous requirement. 

4.3 Event-driven requirements 
An event-driven requirement is initiated only when a 

triggering event is detected at the system boundary. The 
keyword When is used for event-driven requirements. The 
general form of an event-driven requirement is: 

WHEN <optional preconditions> <trigger> the 
<system name> shall <system response> 

For example: “When continuous ignition is com-
manded by the aircraft, the control system shall switch on 
continuous ignition”. This system response is required 
when and only when the stated event is detected at the 
boundary of the system. 

4.4 Unwanted behaviours 
Requirements to handle unwanted behaviour2 are de-

fined using a syntax derived from event-driven require-
ments. “Unwanted behaviour” is a general term used to 
cover all situations that are undesirable. This includes 
failures, disturbances, deviations from desired user beha-
viour and any unexpected behaviour of interacting sys-
tems. The authors’ experiences suggest that unwanted 
behaviour is a major source of omissions in early re-
quirements, necessitating costly rework. Consequently, 
these requirements were given their own syntax, so that 
they could be easily identified throughout the lifecycle. 

Requirements for unwanted behaviour are designated 
using the keywords If and Then. The general form of a 
requirement for unwanted behaviour is:  

IF <optional preconditions> <trigger>, THEN the 
<system name> shall <system response> 

For example “If the computed airspeed fault flag is 
set, then the control system shall use modelled airspeed”. 
In this example, the unwanted event (computed air speed 
fault flag is set) triggers the system response, which al-
lows continued safe operation of the system. 

Using the If-Then structure explicitly differentiates the 
requirements that handle unwanted behaviour. In such 
requirements the system response mitigates the impact of 
the unwanted event, or prevents the system from entering 
an unwanted state.  

                                                           
2 The distinction between wanted and unwanted behaviour is 

not always clear. For example, due to the safety-critical nature 
of aero engine control systems, many subsystems employ mul-
tiple redundant components. This allows the system to accom-
modate unwanted events whilst continuing to satisfy operational 
requirements. In such cases, the system is behaving “normally”, 
but the requirements would be considered as describing “un-
wanted behaviours” using the classification described here. 
Hence the distinction between wanted and unwanted behaviour 
is a matter of viewpoint, or even a matter of “style”. Another 
perspective on the distinction between wanted and unwanted 
behaviours is provided by the concept of Misuse Cases [21]. 
Misuse Cases describe users with hostile intent who are likely to 
have wants that are in direct opposition to the wants of other 
system stakeholders. 
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4.5 State-driven requirements 
A state-driven requirement is active while the system 

is in a defined state. The keyword While is used to denote 
state-driven requirements. The general form of a state-
driven requirement is: 

WHILE <in a specific state> the <system name> 
shall <system response> 

For example: “While the aircraft is in-flight, the con-
trol system shall maintain engine fuel flow above 
XXlbs/sec”. The system response is required at all times 
whilst the system is in the defined state. 

To make requirements easier to read, the keyword 
During can be used instead of While for state-driven re-
quirements. For example: “During thrust reverser door 
translation, the control system shall limit thrust to mini-
mum idle”. In this context, the meaning of During is iden-
tical to While, and this alternative keyword is used purely 
to aid readability. 

4.6 Optional features 
An optional feature requirement is applicable only in 

systems that include a particular feature. An optional fea-
ture requirement is designated with the keyword Where. 
The general form of an optional feature requirement is:  

WHERE <feature is included> the <system name> 
shall <system response> 

For example, “Where the control system includes an 
overspeed protection function, the control system shall 
test the availability of the overspeed protection function 
prior to aircraft dispatch”. This functionality only makes 
sense (and therefore is only required) for a system that 
includes the specified feature. 

4.7 Complex requirement syntax 
For requirements with complex conditional clauses, 

combinations of the keywords When, While and Where 
may be required. The keywords can be built into more 
complex expressions to specify richer system behaviours. 
For instance, the same event may trigger different system 
behaviour depending on the state of the system when the 
event is detected. 

For example: “While the aircraft is on-ground, when 
reverse thrust is commanded, the control system shall 
enable deployment of the thrust reverser”. The triggering 
event (reverse thrust command) triggers the system re-
sponse only when the system is in a particular state (air-
craft on-ground).  

The keywords When, While and Where can also be 
used within If-Then statements to handle unwanted beha-
viour with more complex conditional clauses. For exam-
ple the requirement to handle thrust reverser commands 
during the in-flight state (an unwanted and potentially 
catastrophic event) is handled as follows: “While the air-
craft is in-flight, if reverse thrust is commanded, then the 

control system shall inhibit thrust reverser deployment”. 
In this situation the trigger (reverse thrust command) is 
unwanted whilst in-flight and the required system re-
sponse prevents the system from entering an unwanted 
state. 

Similarly, in the requirement “When selecting idle set-
ting, if aircraft data is unavailable, then the control sys-
tem shall select Approach Idle”, the unwanted behaviour 
(aircraft data is unavailable) should result in the stated 
system response only when the triggering event (selecting 
idle) is satisfied.  
4.8 Testing the hypothesis 

The hypothesis was tested against a number of criteria, 
based on the eight problems associated with NL require-
ments identified in section 2. For each problem, instances 
were counted in the both the raw requirements from the 
CS-E document and the interpretations. The count for 
each set of requirements was compared to assess the ef-
fectiveness of the EARS ruleset. 

5. Results 
The majority of the requirements could be written in 

one of the EARS templates with little difficulty. Those 
that could not were either manipulated to fit the ruleset or 
the ruleset was evolved to incorporate the additional re-
quirement types. 
 

Raw extract of CS-E Interpretation Type 
It must be substantiated by 
tests, analysis or a combina-
tion thereof that the Engine 
Control System performs the 
intended functions in a man-
ner which does not create 
unacceptable thrust or power 
oscillations. 

The Engine Control 
System shall not cause 
unacceptable thrust or 
power oscillations. 

Ubiquit-
ous 

It must be demonstrated that, 
when a Fault or Failure re-
sults in a change from one 
Control Mode to another, or 
from one channel to another, 
or from the Primary System 
to the Back-up System, the 
change occurs so that the 
Engine does not exceed any 
of its operating limitations. 

When the Engine 
Control System 
changes operational 
mode, the Engine 
Control System shall 
maintain the engine 
within approved op-
erational limits. 

Event 
Driven 

Single Failures leading to 
loss, interruption or corrup-
tion of Aircraft-Supplied 
Data, must not result in a 
Hazardous Engine Effect for 
any Engine. 

If a single Failure 
leads to deficient 
Aircraft-Supplied 
Data, then the Engine 
Control System shall 
not cause a Hazardous 
Engine Effect. 

Un-
wanted 
Beha-
viour 

The Engine Control System 
must be designed and con-
structed so that in the Full-up 
Configuration, the system is 
essentially single Fault tole-
rant for electrical and elec-
tronic Failures with respect to 
LOTC/LOPC events. 

While in a Full-Up 
Configuration, the 
Engine Control Sys-
tem shall be Essential-
ly Single Fault Tole-
rant with respect to 
LOTC/LOPC event. 

State 
Driven 
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Raw extract of CS-E Interpretation Type 
When over-speed protection 
is provided through hydro-
mechanical means, it must be 
demonstrated by test or other 
acceptable means that the 
over-speed function remains 
available between inspection 
and maintenance periods. 

Where over-speed 
protection is provided 
through hydro-
mechanical means, the 
frequency of Engine 
Control System in-
spection and mainten-
ance periods shall be 
consistent with the 
required availability of 
the feature. 

Optional 
Feature 

Table 1. Examples of raw extracts from CS-E with 
interpreted control system requirements 

Several patterns emerged as the rules were applied to 
the raw extracts from CS-E. Common examples of these 
patterns were: 

 

• Logical restructuring to increase clarity and un-
derstanding. 

• Reduced wordiness to create simpler statements. 
• The separation of complex triggers resulting in 

two or more atomic requirements. 
• Reusable statements and reusable formats. 
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EARS Applied (Scaled) Raw Text (Scaled)

Graph 1. Quantitative results for case study 

Consultation with a team of specialists, including Safe-

ty Engineers and Airworthiness Engineers, uncovered the 
contextual intent of CS-E, allowing an accurate set of 
requirements to be defined. Table 1 shows some examples 
of raw extracts from CS-E and the resulting interpreta-
tions. As part of the interpretation process, it was occa-
sionally necessary to examine associated advisory materi-
al [22]. This material contains information, verification 
and design statements in addition to requirements. 

Following translation of the requirements, the raw re-
quirements and interpretations were compared against the 
criteria described in section 2. Graph 1 shows the differ-
ences for the eight criteria on a log scale3. Overall, the 
interpretations scored significantly better than the raw 
requirements. Against five of the criteria, the interpreta-
tions contain none of the problems present in the raw re-
quirements. For the other three criteria – ambiguity, va-
gueness and wordiness – a substantial reduction in prob-
lems was observed. The number of requirements and the 
average words per requirement for the raw requirements 
and the interpretations is shown in Table 2. The total 
number of requirements has increased, while the average 
number of words per requirements has reduced. 

 
 Raw extract Interpretation 
No. individual requirements 36.0 47.0 
Av. words per requirement 36.9 25.6 

Table 2. Word count of raw requirement extracts and 
interpretations 

6. Discussion 
The results show that the modified notation has a 

number of advantages over the use of unconstrained NL. 
All of the text from the regulation, once formatted as re-
quirements, was successfully translated into one of the 
EARS templates. Where problems of translation were 
initially experienced, these were addressed by further evo-
lutionary development of the ruleset. 

The review against the criteria of section 2 demon-
strated a significant reduction in all eight problem types. 
For the case study, the notation appears to have eliminat-
ed the problems of complexity, omission, duplication, 
implementation and untestability. However, the claim that 
omissions have been eliminated needs to be treated with 
caution. Whilst the trial may have effectively identified 
some unwanted behaviour, there is no evidence that other 
missing requirements have been captured. 

The problems of ambiguity, vagueness and wordiness 
were reduced, but not eliminated. The remaining prob-
lems are thought to be due to: 

 

• Lexical ambiguity, where a precondition was un-
derstood by inference, but not explicitly recorded. 

                                                           
3 The data contained a combination of large and small data 

values. It was therefore necessary to scale the numbers using a 
log function (on values greater than 1) for clarity on the chart. 
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• General vagueness, which is an innate feature of 
high-level requirements and difficult to remove 
until accompanying design decisions are made. 

• Wordiness occurred where a particularly long re-
quirement, containing numerous conditional 
clauses, employed clumsy word constructions. 

 

The increase in the number of requirements was ex-
pected. This was because some clauses of CS-E contain 
numerous compound requirements, which were separated 
out during the interpretation process. A reduction in the 
average word-count of the interpretations was also antic-
ipated, and is mainly due to reduced complexity, duplica-
tion and wordiness. 

Although the results of this case study are very posi-
tive, a number of limitations could have influenced the 
outcomes of the study: 

 

• The sample size was small, consisting of only 36 
original requirements. 

• The study was restricted to high-level safety-
related requirements. It is possible that other types 
of high-level requirements and lower-level re-
quirements may exist that cannot be adequately 
represented in the notation. 

• Although efforts were made to reduce subjective 
influences, the classification of vagueness is in-
evitably a matter of personal opinion and therefore 
open to inconsistency. 

 

Despite these limitations, the study seems to provide 
ample evidence to support the hypothesis: that a small set 
of simple requirement structures would be an efficient and 
practical way to enhance the writing of high-level stake-
holder requirements. 

7. Future work 
The authors intend to continue with their assessment 

of the remainder of CS-E. This would involve the transla-
tion of all requirements pertaining to the engine control 
system. Further studies are also planned to assess the no-
tation against an entire suite of high-level engine control 
system requirements and lower-level elements of the con-
trol system design. It is hoped that these studies will es-
tablish the effectiveness of the notation by addressing the 
limitations identified in section 6. 

As stated in section 2, a number of known require-
ments problems were consciously excluded from this 
study. One of the reasons for this was that the document 
used in the case study did not include such problems. 
However, it is expected that use of the EARS templates 
will address at least some of these issues when applied to 
other stakeholder requirement documents. For example, 
applying the syntactic rules will clarify the precise pre-
conditions and triggers, which should highlight conflict-
ing requirements. The intention is to apply the EARS sys-
tem to a wider range of system documents which contain 
such problems. 

Further thought is necessary to investigate how the If 
and When preconditions can be applied to unwanted 
states. Although the case study identified no such scena-
rios, unwanted states may require an additional template 
to define how the system should behave while in an un-
wanted state. 
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