
Criteria for the Evaluation of Implemented Architectures

Eric Bouwers
Software Improvement Group

Amsterdam, The Netherlands

E-mail: e.bouwers@sig.nl

Joost Visser
Software Improvement Group

Amsterdam, The Netherlands

E-mail: j.visser@sig.nl

Arie van Deursen
Delft University of Technology

The Netherlands

E-mail: Arie.vanDeursen@tudelft.nl

Abstract

Software architecture evaluation methods aim at identi-
fying potential maintainability problems for a given archi-
tecture. Several of these methods exist, which typically pre-
scribe the structure of the evaluation process. Often left im-
plicit, however, are the concrete system attributes that need
to be studied in order to assess the maintainability of imple-
mented architectures.

To determine this set of attributes, we have performed an
empirical study on over 40 commercial architectural eval-
uations conducted during the past two years as part of a
systematic “Software Risk Assessment”. We present this
study and we explain how the identified attributes can be
projected on various architectural system properties, which
provides an overview of criteria for the evaluation of the
maintainability of implemented software architectures.

1 Introduction

Any software system that is used will need maintenance
in order to keep up with new demands and changing busi-
ness requirements [11]. From this perspective, a good soft-
ware architecture is desired because, according to Clements
et al. [5]; “Architectures allow or preclude nearly all of the
system’s quality attributes”. Because of this, it is not sur-
prising that a wide range of software architecture evaluation
methodologies exists (for overviews see [2, 7]) for selecting
an architecture that minimizes business risks.

Examining the review of Babar et al. [2], we conclude
that almost all of the discussed methods focus on evaluating
the quality of a designed architecture, i.e., evaluating the
architecture before it is implemented. In contrast, the so-
called late architecture evaluations [13] are focused on as-
sessing the quality of an implemented architecture. Taking
a closer look at the late architectural evaluation methods we
notice that they only define the structure of the evaluation
in the form of roles (e.g., evaluation team, architect, stake-
holders) and steps (e.g., the nine steps of the ATAM [5]).

Although this structure provides a basic framework, it does
not explain which properties of a system should be studied.
Usually, finding out which properties to study is part of the
process itself.

Fortunately, there is research available that provides ex-
amples of system properties to study, see for example Kaz-
man et al. [9] or Murphy et al. [14]. These techniques
mainly focus on extracting a high-level (module) view of
a system in terms of components and their (call)-relations.
This view is then compared with a previously designed ar-
chitecture. In this light, the quality of the implemented ar-
chitecture is directly coupled with the conformance to the
original designed architecture.

Unfortunately, in many cases the documentation of the
architecture is not available or out-of-date [12]. Also, the ar-
chitecture of a system contains more than the relationships
amongst the main components. Many researchers agree that
one needs to inspect a system using multiple views to get a
complete overview of the architecture of a system [3, 10].

In order to evaluate the maintainability of a system,
the Software Improvement Group (SIG) has developed
the source-based Software Risk Assessments (SRA) [6]
method, which it uses to assess systems on a commercial
basis. Part of this method is dedicated to evaluating the im-
plemented architecture of a software system. During the
course of an SRA, a Maintainability Model [8] is used. This
model provides an overview of several system properties to
consider, including three system properties which address
architectural issues from different perspectives.

Most system properties used within the Maintainability
Model can be assessed by auditing a single system attribute.
For example, the system attribute lines of code can be used
to assess the system property Volume. Unfortunately, ar-
chitectural system properties are often too broad to be as-
sessed by a single system attribute. Instead, several system
attributes need to be judged and combined to come to a bal-
anced quality rating. This quality rating is currently based
on expert opinion. To avoid inconsistencies in the quality
ratings, systems are always assessed by multiple experts.
However, it would be beneficial if the rating of an architec-

978-1-4244-4828-9/09/$25.00 2009 IEEE Proc. ICSM 2009, Edmonton, Canada

73

Authorized licensed use limited to: University of London: Online Library. Downloaded on April 04,2022 at 20:55:29 UTC from IEEE Xplore. Restrictions apply.

ture’s quality could be (partially) derived in a more formal-
ized way.

To help this we have conducted an empirical study to
reach two goals: 1) identifying the system attributes the
SIG experts have used to assess these architectural system
properties, and 2) finding out how the system attributes are
normally projected onto the three architectural system prop-
erties. Combining the answers to these research questions
leads to an overview of criteria for evaluating the maintain-
ability of implemented architectures.

The paper is structured as follows: we first introduce the
environment in which the SIG evaluates implemented archi-
tectures in Section 2. After this, the architectural properties
are introduced in Section 3. A problem statement and en-
suing research questions are formulated in Section 4, fol-
lowed by the design of our empirical study in Section 5.
The results of the study are used to formulate answers to
our research questions in Section 6. A discussion of the rel-
evance of the study and threats to its validity is provided in
Section 7, after which related work is discussed in Section
8. Finally, Section 9 provides a conclusion and pointers for
future work.

2 Software Risk Assessments

The SIG has developed the Software Risk Assessment
method to evaluate the maintainability of a software system.
A first version of this method was described more than five
years ago [6]. Since then, the SIG experts have used this
method to assess over 80 systems, almost all from industry.
In the course of these assessments, the method has been re-
fined to better suit the purpose of the SRA. This section con-
tains a description of the latest version of the SRA method
reflecting this experience, to shown in which environment
the SIG normally evaluates implemented architectures.

Goals and Deliverables The goal of an SRA is to an-
swer the question a company has about the quality of their
software system(s). Typical examples for the need of an
SRA include package selection, quality assurance or decid-
ing whether to maintain or rebuild a given system. A more
detailed description of these scenarios is given in [6].

The outcome of an SRA is a report containing objective
measurements of the source code, an objective representa-
tion of the concerns of the business and an expert assess-
ment of the relation between the measurements and the con-
cerns. Lastly, a set of scenarios for reducing the impact of
potential risks is given. The duration of the project typically
ranges between six to eight weeks.

Roles Figure 1 illustrates the different roles and respon-
sibilities in the SRA process. The SRA Consultant is re-

Figure 1. Roles and communications within
the SRA process.

sponsible for the overall process and delivering the final re-
port. The SRA Analyst assists the SRA Consultant, mainly
on the technical level, and is responsible for running the
source code analysis, interpreting its outcome and support-
ing the SRA Consultant during technical interviews. The
SRA Client is the organization that requested the SRA to
whom the final report is delivered. The System Client is the
organization that is using, or is going to use the system. In
most cases, the System Client and the SRA Client are the
same. Lastly, the System Supplier is the organization that
has developed/maintained the system.

Sessions The SRA process includes four different ses-
sions followed by the delivery of the final report. Before
starting the first session the System Supplier transfers a
copy of the source code of the system, as well as available
documentation, to the SRA Analyst.

The first session is the Technical Session and is attended
by the SRA Consultant, the SRA Analyst and the System
Supplier. Within this session the process and target of the
SRA are explained. Additionally, this session focuses on
collecting all relevant technical information of the system.

After the Technical Session, the SRA Analyst starts the
extraction of source-code facts from the system. Simulta-
neously, the SRA Consultant conducts a Strategy Session
together with the System Client and the SRA Client in or-
der to precisely identify the business goals of the client.

In the Validation Session, the SRA Consultant, assisted
by the SRA Analyst, presents the derived facts to the Sys-
tem Supplier and the System Client. This session provides
the opportunity to identify errors in the retrieved facts.

In the last step, the SRA Consultant and the SRA Analyst
map the source-code facts onto the concerns of the business
and derives scenarios that confirm or mitigate the concerns.
Additionally, the scenarios for reducing the impact of the
risks are identified. All of this is written down in the final

74

Authorized licensed use limited to: University of London: Online Library. Downloaded on April 04,2022 at 20:55:29 UTC from IEEE Xplore. Restrictions apply.

report which is presented in the Final Presentation. After
this session, the final report is delivered to the SRA Client.

Experience The described SRA method has been suc-
cessfully applied in the past four years. An internal report
about customer satisfaction shows that our customers are
highly satisfied with the outcome of their SRA. The sur-
vey over the year 2008 (with a response rate of 60 percent)
reveals that over 90 percent of the clients are definitely in-
terested in a new SRA (giving it a four out of five). Also, al-
most 80 percent of the clients would definitely recommend
the SRA service to others (a number rated important by,
for example, Reichheld [15]). Additionally, we have seen
a steady growth in the number of SRA’s carried out in the
last two years. This increased demand for risk assessments
justifies a further investment in making the process more
systematic, which is the goal of the present paper.

3 Architectural System Properties

As part of an SRA, a software system is evaluated on
a number of system properties, including both code-level
properties and architectural properties. Code-level proper-
ties include the volume of the system, the complexity of its
units, the degree of redundancy in its code lines etc. These
code-level properties can be measured in a fairly direct way,
by gathering source code metrics, aggregating them, and
comparing them to statistically determined thresholds. A
more detailed description of SIG’s measurement model for
code-level system properties can be found elsewhere [8].

To evaluate the implemented architecture of the system,
three architectural system properties are distinguished, cor-
responding to different, but complementary, perspectives.

High-level Design The architectural property of high-
level design is aimed at the technical division of the overall
system into layers or other organizational and/or technolog-
ical components. A typical example is the division of the
system into a data layer, a business logic layer, and a user
interface, following the three-tier architectural style.

Modularisation The architectural property of modulari-
sation concerns the division of the main technical building
blocks into functional modules. A typical example would
be modules for account management, interest calculation,
payment processing, annual reporting, etc. A single func-
tional area is often addressed by several related modules,
situated in distinct technical layers.

Separation of Concerns The architectural property of
separation of concerns deals with the division of tasks over
the modules within layers and over the source code units

within modules. For example, within the module for pay-
ment processing, the tasks of user authentication, input val-
idation, transaction logging, etc. may be addressed sepa-
rately or in a tangled fashion. Also, some tasks may be
handled fully at the data layer, while others are handled by
a combination of units at the data and business logic layers.

Thus, these three architectural properties cover organiza-
tional elements at increasingly higher degrees of granular-
ity: layers or components, modules, and tasks or concerns.
At the granularity of high-level design, the focus is on tech-
nological choices. At the granularity of modules, the func-
tional break-down takes center stage. Finally, at the granu-
larity of concerns, the interplay of technical and functional
divisions is addressed.

Unlike code-level properties, the architectural properties
are not evaluated on the basis of source code metrics alone.
Though certain source code metrics may be considered by
the evaluator, many other factors are taken into account that
are not readily quantified. In fact, the evaluation requires in-
terpretation of a wide variety of observations and extensive
software engineering expertise. In the remainder of this pa-
per, we delve deeper into the exact criteria that are applied
for this evaluation.

4 Problem Statement

The criteria employed by SRA Consultants for the eval-
uation of implemented architectures have emerged from
practice. The overall distinction between High-level De-
sign, Modularization, and Separation of Concerns emerged
early and has been used in a stable fashion throughout
many years. However, the observations to underpin judge-
ments about these architectural properties were selected and
used on a per-evaluation basis. The SRA Consultants may
share a common understanding of observable system at-
tributes and how they influence architectural properties, but
this common understanding has not been documented in an
evaluation-independent and re-usable form.

The lack of a documented set of observable attributes
leads to a number of limitations. Firstly, without documen-
tation, the evaluation method can only be taught by example
to new SRA consultants, which is a time-consuming pro-
cess. Secondly, the structure of the argument that backs
up each evaluation must be constructed from scratch each
time, even though they follow the same pattern. In prac-
tise, previous arguments are used as templates for new
ones, while it could be more efficient to refer to a common
model. Thirdly, a documented set of relevant system at-
tributes would augment the traceability, reproducibility, and
evaluator-independence of the evaluation method. Lastly,
to use the architecture evaluation results for comparing sys-
tems, e.g. in order to benchmark the architecture of a sys-
tem under evaluation against the architectures of previously

75

Authorized licensed use limited to: University of London: Online Library. Downloaded on April 04,2022 at 20:55:29 UTC from IEEE Xplore. Restrictions apply.

evaluated systems, a documented and shared overview of
criteria is indispensable.

In order to discover and document a set of observ-
able system attributes that can be used for evaluating im-
plemented architectures, we have conducted an empirical
study [16] into the evaluations performed by SRA Consul-
tants of the SIG over several years. In particular, we set out
to find answers to the following research questions:

Q1 Which set of system attributes do experts normally take
into account when determining the quality rating of the
three architectural system properties?

Q2 How do these system attributes influence the architec-
tural system properties?

The answers to Q1 documents which observable system at-
tributes are relevant for architectural evaluation, while the
answer to Q2 documents which properties are influenced
by them. Together, the answers to these questions help to
remove the above-mentioned limitations.

5 Empirical Study

5.1 Design

We took the guidelines as proposed by Wohlin [16] into
account to design our empirical study. The main input for
this part are the final reports of 44 SRA’s conducted between
December 2006 and August 2008. Older reports do not con-
sider the Maintainability Model and are therefore not taken
into account. The reports contain a total of 54 system rat-
ings and are written by seven different SRA Consultants.
The systems that where reviewed cover a wide range of lan-
guages, sizes, ratings and business area’s. An overview of
this data is given in Figure 2. Note that the two lower bar-
charts respectively show the number of systems with a spe-
cific rating and the number of systems of a specific size.

For each report, we extract the arguments used for the
quality rating for each of the architectural system proper-
ties. These arguments can be extracted from a table that
appears in most final reports. This table lists all the system
properties from the Maintainability Model, the rating for
each system property, and a small argumentation for this
rating. Additionally, each system property is discussed in
a separate paragraph in the appendix of the report. When
there is no table we only use the information extracted from
that paragraph. In case of ambiguity we let the arguments in
the table take precedence because these are the arguments
most likely used to determine the final rating. From the list
of all arguments we extract the set of system attributes by
examining which system attributes are mentioned in the ar-
guments. The result of this first step is given in Section 5.2.

After mining the list of system attributes, we iterate
through all the reports a second time. In this iteration we
determine which system attributes are used to rate each of
the three architectural system properties. This is done in a
separate iteration because the first step has given us a stable
set of system attributes to work with, which makes it easier
to categorize all arguments consistently. The result of this
second step is given in Section 5.3.

Validation of the results is done in two ways. First, we
conduct interviews with two experienced SRA Consultants
in which we ask for an explanation of how they usually eval-
uate the three architectural system properties. Secondly, we
present our findings to a group of ten SRA Consultants. In
both cases the authors are not amongst the SRA Consul-
tants. During the validation the SRA Consultants can iden-
tify new system attributes or projections. When this is not
the case we conclude that the results are valid and provide
a good overview of the current practice. The interview pro-
cess and reports of the interviews are described in Section
5.4. The results of the study are validated in Section 5.5.

5.2 Report Study Results

In order to extract the system attributes from the argu-
ments used in the reports we used an iterative process. The
first report provided us an initial set of system attributes,
after which we tried to place the arguments used in the sec-
ond report under these system attributes. When an argu-
ment could not be placed under an existing system attribute
we introduced a new system attribute based on a general
description of the used argument. Adding a new system at-
tribute was done conservatively in order to keep the list of
system attributes manageable.

Finding the system attributes used in an argument was
in most cases straightforward. For example, the argument
“Usage of many different technologies” clearly touches
upon the Technology Combination attribute. On the other
hand, the argument “Implementation of data-access logic
is bad” does not directly mention a system attribute. After
reading the accompanying paragraph it became clear that
the code for data-access was scattered all over the system.
Therefore, this argument touches upon the Functional Du-
plication and the Module Functionality attribute.

Using this process we have identified 15 system at-
tributes that are used in the evaluation process. The list
of found system attributes is given in Table 1 and includes
items one would typically expect such as layering or the
use of frameworks, as well as less common attributes such
as the (un)likelihood of certain technology combinations
(e.g., Java and Pascal). For each system attribute we pro-
vide a name, a definition and an operational procedure to
quantify the attribute called an “assessment approach”.

76

Authorized licensed use limited to: University of London: Online Library. Downloaded on April 04,2022 at 20:55:29 UTC from IEEE Xplore. Restrictions apply.

Figure 2. Distribution of the key characteristics of the 54 subject (sub)-systems

Name Description Assessment Approach
Abstraction How well are input, output and functionality shielded

throughout the system.
Inspecting maximum Inheritance Depth, create a call-graph
showing the path between user interface and back-end.

Functional Duplication The amount of functional duplication within the system. Browsing the source code, identifying chunks of duplicated
functionality.

Layering The functional decomposition of the system into layers. Inspecting the call graph on module level.

Libraries / Frameworks The usage of standard libraries and frameworks. Inspecting the list of imports, structure of the source- and
build-files.

Logic in Database The encoding of business logic in the database. Inspecting the size and complexity of stored procedures and
triggers.

Module Dependencies The static dependencies (i.e., calls, includes) between
modules.

Inspecting the call-graph on module level, matching this
against expected dependencies.

Module Functionality The match between the expected and encoded functional-
ity within a module.

Expected module functionality is determined by interviews
and available documentation, encoded functionality is deter-
mined by browsing the code.

Module Inconsistency Whether similar modules have a different type of set-up. Inspecting the structure of the source / method calls within a
module.

Module Size The match between expected size of a module and the ac-
tual size.

Expected module size is determined by the encoded function-
ality, actual size is measured by summing the LOC of all files
in a module.

Relation Documentation /
Implementation

The correctness of the relationship between the available
documentation and the source code.

Manual inspecting of both the source code and the documen-
tation.

Source Grouping The complexity of grouping sources into modules. Creation of filters to put sources into modules.

Technology Age The age of the used languages and platforms. Finding the technologies used is done by inspecting the differ-
ent types of source code. Used platforms are determined by
reading the documentation and through the technical session.

Technology Usage Adherence to coding standards, patterns, and best prac-
tices.

Browsing the source code, using language specific style-
checkers.

Technology Combination How well the combination of technologies is expected to
work.

Finding of the technologies is done in the same way as Tech-
nology Age, how common the combination is is based on ex-
pert opinion.

Textual Duplication The amount of textual duplication within the system. Checking the values of a duplication report.

Table 1. System Attributes mentioned in the rating of properties

77

Authorized licensed use limited to: University of London: Online Library. Downloaded on April 04,2022 at 20:55:29 UTC from IEEE Xplore. Restrictions apply.

H
ig

h
L

ev
el

D
es

ig
n

M
od

ul
ar

iz
at

io
n

Se
pa

ra
tio

n
of

C
on

ce
rn

s

Abstraction 8 3 2
Functional Duplication 2 6 18
Layering 28 1 20
Libraries / Frameworks 22 1 1
Logic in Database 1 1 3
Module Dependencies 7 11 6
Module Functionality 4 32 13
Module Inconsistency 0 1 0
Module Size 1 1 0
Relation Documentation / Implementation 2 3 0
Source Grouping 0 14 2
Technology Age 13 0 0
Technology Usage 7 3 0
Technology Combination 5 1 0
Textual Duplication 0 0 4

Table 2. Number of times a system attribute
is named in the rating of a system prop-
erty.

5.3 Projection Results

After defining the set of system attributes we examined
the reports in a second iteration and determined which sys-
tem attributes are used as an argument for which system
property. The result of this survey can be found in Table 2.
Note that several system attributes can be mentioned in the
rating of each of the system properties, which can result in
more than 54 system attributes per system property.

5.4 Interview Description

The interviews with the two SRA Consultants took place
on two different occasions. In both cases the SRA Con-
sultant was asked to explain how he usually determines the
rating of the three architectural system properties. Since the
goal of these interviews is to validate our findings we did
not provide the list of system attributes. Even though we
did not impose a time-limit both interviews took around 60
minutes to complete. The reports of the two interviews are
described below.

Expert 1 The first expert normally uses an analogy with
the different dimensions of the board of a tic-tac-toe game.

Each architectural system property is modeled as a separa-
tion of the functionality along one of the axis in the game.
This analogy is made to explain the differences between the
architectural system properties to the management of an or-
ganization more easily.

Modularization is explained as the vertical separation of
functionality. The expert looks for modules in the code
based on e.g. the directory structure, naming convention of
files, packaging structure, etc. Roughly speaking, four mod-
ules are usually expected for a system with < 20 KLOC,
up to 10 modules for a system < 100 KLOC and up to 20
modules in larger systems. After this, the files in the mod-
ules are inspected to discern if these modules encode certain
functionality in a consistent manner. The sizes of the mod-
ules are inspected to see whether the distribution of the code
is expected given the functionality encoded in the module,
or whether there is an indication of poorly chosen modules
(e.g. 1 module of 10KLOC and 15 modules of 100 LOC).

Separation of Concerns is explained as the horizontal
separation of functionality. This involves, for example, the
layering of the system. Are there layers for specific pur-
poses such as presentation, data-access and business-logic?
Is there one and only one place where communication with
external systems or with the database is handled? Also,
framework usage and violations between layers are taken
into account in the rating of this characteristic. Finally, the
interweaving of (for example) the definition of SQL-code
and business-logic or embedding Java in JSP is considered
to have a negative impact on Separation of Concerns.

High Level Design is explained as the diagonal separa-
tion of concerns. This is usually measured by inspecting
the call-graph on module level and determining the absence
or presence of loops (so each dependency between modules
is only one-way). Also, the usage of modern programming
languages and platforms are taken into account for this sys-
tem property.

Expert 2 The interview with the second expert revealed
the following definitions of the different architectural sys-
tem properties. For High Level Design, the interaction of
the system under assessment and other systems is exam-
ined. A typical question for this is: ”is there a clearly de-
fined communication channel to the outside world?” Also,
the expert looks for a high level division of the system into
layers with separate functionality. Furthermore, the relation
between the provided documentation (if any) and the source
code is assessed. This relation is usually given a low prior-
ity except when there are large differences. Lastly, when
frameworks contribute to the layering (for example frame-
works for dependency injection or persistence) the usage of
these frameworks is taken into account.

Modularization is rated by the way the system is divided
into logical modules. This division is based on the package

78

Authorized licensed use limited to: University of London: Online Library. Downloaded on April 04,2022 at 20:55:29 UTC from IEEE Xplore. Restrictions apply.

H
ig

h
L

ev
el

D
es

ig
n

M
od

ul
ar

iz
at

io
n

Se
pa

ra
tio

n
of

C
on

ce
rn

s

Abstraction E2
Functional Duplication E1
Layering E2 E1
Libraries / Frameworks E2 E1, E2
Logic in Database
Module Dependencies E1 E2
Module Functionality E2 E1, E2 E2
Module Inconsistency E1
Module Size E1
Relation Doc. / Impl. E2 E2
Source Grouping E1
Technology Age E1
Technology Usage
Technology Combination
Textual Duplication

E1 = mentioned by expert 1, E2 = mentioned by expert 2.

Table 3. System attributes used per system
property.

or directory structure, interviews with the customer and the
presence of clearly defined subsystems. Furthermore, the
relation between the documentation and the module struc-
ture is taken into account. Given the modules, an effort is
made to put each module into one of the layers of the sys-
tem. This is done based on the functionality of the mod-
ule. This also includes the division of modules into func-
tional modules and modules that act as utility-repositories.
Finally, the dependencies between the modules is assessed
using the call-graph. A good call-graph shows the layering
where each module is part of one layer and each layer de-
pends on one lower layer. Furthermore, a good call-graph
shows all the utility modules because these modules only
receive calls. A bi-directional dependency in the call-graph
usually hints at an implementation or design flaw.

Separation of Concerns is rated by looking at the separa-
tion of functionality within modules. An example of this is
whether the interfacing between two components in a mod-
ule is separated from the implementation. A different ex-
ample is whether a module that allows access to the out-
side worlds implements this access as a thin layer on top of
’real’ functionality instead of encoding business logic into
the functions / objects that provide the actual access. Also,
frameworks that do not directly contribute to the layering of

the system are taken into account.

5.5 Validation

When we process the reports of the interviews with the
experts in the same we as we analyzed the final reports, we
see that they do not introduce any new system attributes.
All of the arguments used for each system property can
be placed under the 15 system attributes listed in Table 1.
For example, the first expert explains that Modularization is
judged by looking at the sizes of the modules, which corre-
sponds with the Module Size attribute. A second example is
that he mentions “. . . the use of modern programming lan-
guages . . . ” as an argument for High Level Architecture.
This corresponds to the Technology Age attribute. The ex-
perts opinion of how the system attributes project onto sys-
tem properties is summarized in Table 3.

Additionally, the presentation of the findings to a group
of ten SRA consultants did not lead to an addition of new
system attributes. During the discussion that followed the
presentation the SRA Consultants concluded that they did
not miss system attributes they normally use. Also, they
agreed that the projection of the system attributes as given in
Table 2 provides a general overview of the current practice.

6 Answers to research questions

Q1: Which system attributes do experts take into ac-
count when evaluating architectural system properties?
The 15 system attributes presented and defined in Table 1
are taken into account for the evaluation of architectural sys-
tem properties by SIG’s software assessment experts.

Note that some of these attributes, e.g. Module Inconsis-
tency and Module Size, occurred with a very low frequency
(see Table 2). Still, these attributes were also mentioned
in the expert interviews (see Table 3), which indicates that
they are actively used and should therefore not be excluded
from the list.

Q2: How do these system attributes influence the archi-
tectural system properties? The data in Table 2 provides
the raw historical data of how the system attributes have in-
fluenced the architectural system properties. From this data,
we can mathematically deduce a) which system attributes
are most important for each system property, and b) which
system property each system attributes influences most. The
answers to these questions provides an overview of how the
system properties are influenced by the system attributes.

a) Which system attributes are most important for each
system property? When all system attributes are of equal
importance for each system property they would have been

79

Authorized licensed use limited to: University of London: Online Library. Downloaded on April 04,2022 at 20:55:29 UTC from IEEE Xplore. Restrictions apply.

H
ig

h
L

ev
el

D
es

ig
n

M
od

ul
ar

iz
at

io
n

Se
pa

ra
tio

n
of

C
on

ce
rn

s

Abstraction X
Functional Duplication X X
Layering X X
Libraries / Frameworks X
Logic in Database
Module Dependencies X X X
Module Functionality X X
Module Inconsistency
Module Size
Relation Doc. / Impl.
Source Grouping X
Technology Age X
Technology Usage X
Technology Combination
Textual Duplication

Table 4. Most Important System Attributes
Per System Property

used an uniform number of times. By first calculating the
average number of usages for each system property, we can
filter out the system attributes with a lower usage count than
this average. This filtered set gives us an overview of the
system attributes which are most important for that system
property.

For example, when we add all mentioning of system
attributes for Modularization we get a total of 78 usages.
When all system attributes would contribute to Modular-
ization in the same way we expect each system attribute to
be used 78/(number o f system attributes) = 78/15 = 5.2
times. Since this is not the case, we can filter out the most
important system attributes for Modularization by stripping
away all system attributes which where mentioned less than
five times. This leaves us with only the four most important
system attributes for Modularization, see Table 4.

Comparing the projection of the specific experts shown
in Table 3 with the projection of the historical opinion in
Table 4 we observe that some deviation between the two
exists. We believe that this deviation stems from the fact
that the projection of the experts is extracted from a single
free-form description of the assessment process, while the
projection in a report contains the consolidation of multiple
discussions amongst SRA Consultants. Also, during the in-
terviews the SRA Consultants most likely mentioned only

H
ig

h
L

ev
el

D
es

ig
n

M
od

ul
ar

iz
at

io
n

Se
pa

ra
tio

n
of

C
on

ce
rn

s

Abstraction X
Functional Duplication X
Layering X X
Libraries / Frameworks X
Logic in Database X
Module Dependencies X
Module Functionality X
Module Inconsistency X
Module Size X X
Relation Doc. / Impl. X X
Source Grouping X
Technology Age X
Technology Usage X
Technology Combination X
Textual Duplication X

Table 5. Most Important System Properties
Per System Attribute

those system attributes that they consider to be important in
general, which are not necessarily the same as the system
attributes that are most important for each system property.

b) which system property is influenced most by each sys-
tem attribute? In order to compute the answer to this
question we again compute a threshold for average use, but
in this case we use this threshold to filter out the most im-
portant system property for each system attribute. For ex-
ample, the system attribute Technology Combination is used
a total of 6 times. This provides us with a threshold of
6/(number o f system properties) = 6/3 = 2. Using this
threshold we conclude that the system property High Level
Design is most relevant for this system attribute. The algo-
rithm described above results in the listing for which system
property is influenced most by each system attribute shown
in Table 5.

7 Discussion

Applicability By documenting the system attributes used
to evaluate implemented architectures, as well as their pro-
jection onto system properties, the limitations mentioned
in Section 4 can be lifted. Training new consultants be-
comes easier because the documentation is available, argu-

80

Authorized licensed use limited to: University of London: Online Library. Downloaded on April 04,2022 at 20:55:29 UTC from IEEE Xplore. Restrictions apply.

mentation of the evaluation can refer to this documentation
which increases efficiency, and by using the documenta-
tion as a guideline during evaluations the traceability and
reproducibility of the evaluation method increases. Lastly,
ratings determined with the documentation in mind allow
comparison against a benchmark of earlier evaluations, pro-
viding better insight into the quality of the implemented ar-
chitecture under review.

In general, we can think of other useful applications for
both the list of system attributes and the projection onto
system properties. For example, we believe that the list of
system attributes can directly be used in existing architec-
tural evaluation methods to make them more operational.
Investigating the impact of using a common set of attributes
within, for example, the ATAM [5] is part of our future
work. Furthermore, we like to investigate whether the us-
age of a standard set of system attributes makes it easier to
compare the results of different evaluation methods.

More speculatively, we envision that the list of system
attributes combined with the projection can be turned into a
light-weight “sanity check” for implemented architectures.
This can, for example, be done by providing questionnaires
with a few qualitative questions about each system attribute.
When multiple persons familiar with the system fill out
these questionnaires the general opinion about the quality
of the implemented architecture can quickly be determined
by averaging the answers. Naturally, the results of such a
sanity check are not of the same quality as a complete ar-
chitecture evaluation. However, we believe that performing
such a check on a set of system can be useful to, for in-
stance, filter out the system that is in most dire need of a
complete evaluation.

In any case, the list of system attributes serves as a
“wish”-list for researcher to develop automatic, qualita-
tive measurements. Taking into account the importance of
the system attributes determined by the projection we can
quickly spot for which system attribute there is a need for
qualitative, easily (or more preferably automatically) calcu-
lable metrics. Developing these type of metrics is part of
our future work.

Threats to Validity A first threat to validity is whether
the data sources of the empirical study are representative.
We believe that the set of reports is representative because
Figure 2 shows that the used reports were written for sys-
tems covering a wide range of industries, system sizes and
programming languages. Also, the lower-left chart in Fig-
ure 2 shows that the 54 ratings cover the complete spectrum
of quality ratings. This implies that the study is not based
on only problematic systems.

The data extracted from the interviews might not be
representative because we have only interviewed two SRA
Consultants. Even though the two interviewed SRA Con-

sultants are amongst the most experienced consultants in
our company, the low number of interviewees might lead to
system attributes not being discovered through these inter-
views. This threat is countered by the fact that we used the
interviews only as a secondary source of validation.

A second threat is the reliability of the measurements
of the report study. Even though a consistent process was
followed, a different person might find different arguments
in the reports. An inter-rater test would help in countering
this threat. Performing such an inter-rater test will be part
of our future work.

Lastly, a threat is that our results cannot be generalized
towards an environment outside the SIG. Even though, we
believe that the procedure for our case study is described
in such a way that it can be replicated, we cannot say for
sure whether a replication of our study in a different envi-
ronment will reproduce similar results. Even if the process
of an SRA as explained in Section 2 is followed, the final
outcome of the SRA’s, and therefore the results of the case-
study, are dependent on the skills of the experts, and the
nature and properties of the assessed software systems. Ac-
tual replication of our study is needed in order to counter
this threat.

8 Related Work

In a study done at AT&T [1], fifty evaluation reports
were mined for indicators that can predict the risk of a
project. The authors found twelve main categories of issues.
Unfortunately, these twelve categories where too broad to
be useful, so they had to use more concrete issues to make
a reliable method for predicting the risk of a project. Even
though the domain of the study differs, it does show that it
is useful to identify lower level system attributes.

As discussed in Section 7, the list of system attributes to-
gether with the analysis of the projection provides us with a
first overview of criteria for evaluating implemented archi-
tectures. According to the overviews of Babar et al. [2]
and Dobrica et al. [7], the only architectural evaluation
method aimed at implemented architectures is introduced
by Bengtsson et al. [4]. The method describes four differ-
ent approaches for assessing quality attributes, i.e., scenar-
ios, simulation, mathematical reasoning and objective rea-
soning. However, the actual criteria to use during the eval-
uation are not mentioned.

More recently, Lilienthal [12] defined a model to assess
the complexity of implemented architecture. The system
attributes she uses are similar to ours, but the model does
not take into account systems implemented in multiple lan-
guages. Also, the environment of the system (e.g., libraries
used, platforms it runs on) are not considered. Lastly, our
work goes beyond the work of Lilienthal by providing not
only an overview of criteria, but positioning it in a larger

81

Authorized licensed use limited to: University of London: Online Library. Downloaded on April 04,2022 at 20:55:29 UTC from IEEE Xplore. Restrictions apply.

process to assess the maintainability of systems in general.
There also exists some research in the area of assess-

ing the individual system attributes. For example, Lindvall
et al. [13] links the documented architecture of a system to
the actual implementation. Their case study shows an ex-
ample of how the connections between modules, a specific
instantiation of our module dependencies, are used to assess
this link. As mentioned before, both Kazman et al. [9] and
Murphy et al. [14] use module dependencies to assess an
implemented architecture. Even though this research pro-
vides a solid basis for assessing these attributes in isolation
we believe that they do not cover all aspects of an imple-
mented architecture.

9 Conclusion

This paper describes our steps for finding criteria for the
evaluation of the maintainability of implemented architec-
tures. The main contributions of this paper are:

• A description of an empirical study using over 40 SRA
reports (Section 5)

• The identification of 15 system attributes that have an
impact on the maintainability of an implemented ar-
chitecture (Table 1)

• An analysis of the projection of the found system
attributes onto three architectural system properties
(Section 7)

Additionally, we have extended the work presented in [6]
by giving a more detailed description of the SRA process
in Section 2. Combining the identification of the system at-
tributes with the analysis of the projection provides us with
a first overview of concrete criteria for the evaluation of the
maintainability of implemented architectures.

Future Work First of all, we are going to conduct an
inter-rater test in order to further validate our results. Addi-
tionally, we would like to validate the criteria by applying it
to future SRA’s. More specifically, we are interested in find-
ing out whether the defined criteria make it easier for SRA
Consultants to assess the three architectural properties.

Also, we intend to look into ways to automate the quality
assessment of the different system attributes. Automated
measurements do not only make sure that the final quality
assessment is more objective, it also helps in reproducing
the results of an assessment.

Other areas of future work include the development of
light-weight sanity check based on the 15 system attributes,
and determining the impact of using the 15 system at-
tributes in existing architecture evaluation methods such as
the ATAM [5].

Acknowledgments The authors would like to thank all the col-
leagues at the Software Improvement Group for their interesting
discussions, their feedback and their participation in the empirical
study.

References

[1] A. Avritzer and E. J. Weyuker. Investigating metrics for ar-
chitectural assessment. In METRICS ’98: Proceedings of
the 5th International Symposium on Software Metrics. IEEE
Computer Society, 1998.

[2] M. Babar, L. Zhu, and D. R. Jeffery. A framework for classi-
fying and comparing software architecture evaluation meth-
ods. In ASWEC ’04: Proceedings of the 2004 Australian
Software Engineering Conference. IEEE Computer Society,
2004.

[3] L. Bass, P. Clements, and R. Kazman. Software Architecture
in Practice, Second Edition. Addison-Wesley Professional,
2003.

[4] P. Bengtsson and J. Bosch. Scenario-based software archi-
tecture reengineering. In ICSR ’98: Proceedings of the 5th
International Conference on Software Reuse, June 1998.

[5] P. Clements, R. Kazman, and M. Klein. Evaluating software
architectures. Addison-Wesley, 2005.

[6] A. v. Deursen and T. Kuipers. Source-based software risk
assessment. In ICSM ’03: Proceedings of the International
Conference on Software Maintenance. IEEE Computer So-
ciety, 2003.

[7] L. Dobrica and E. Niemelä. A survey on software ar-
chitecture analysis methods. IEEE Trans. Software Eng.,
28(7):638–653, 2002.

[8] I. Heitlager, T. Kuipers, and J. Visser. A practical model for
measuring maintainability. In QUATIC ’07: Proceedings of
the 6th International Conference on Quality of Information
and Communications Technology, pages 30–39. IEEE Com-
puter Society, 2007.

[9] R. Kazman and S. J. Carrière. Playing detective: Recon-
structing software architecture from available evidence. Au-
tomated Software Eng., 6(2), 1999.

[10] P. Kruchten. The 4+1 view model of architecture. IEEE
Softw., 12(6):42–50, 1995.

[11] M. M. Lehman. On understanding laws, evolution and con-
servation in the large program life cycle. Journal of Systems
and Software, 1(3):213–221, 1980.

[12] C. Lilienthal. Architectural complexity of large-scale soft-
ware systems. In Proceedings of the 13th European Confer-
ence on Software Maintenance and Reengineering, 2009.

[13] M. Lindvall, R. Tesoriero Tvedt, and P. Costa. An
empirically-based process for software architecture evalua-
tion. Empirical Softw. Engg., 8(1):83–108, 2003.

[14] G. C. Murphy, D. David Notkin, and K. J. Sullivan. Soft-
ware reflexion models: Bridging the gap between source and
high-level models. In SIGSOFT ’95: Proceedings of the 3rd
ACM SIGSOFT symposium on Foundations of software en-
gineering, pages 18–28. ACM, 1995.

[15] F. Reichheld. The one number you need to grow. Harvard
business review, 81(12):46–54, 2003.

[16] C. Wohlin, P. Runeson, M. Host, C. Ohlsson, B. Regnell, and
A. Wesslén. Experimentation in Software Engineering: an
Introduction. Kluver Academic Publishers, 2000.

82

Authorized licensed use limited to: University of London: Online Library. Downloaded on April 04,2022 at 20:55:29 UTC from IEEE Xplore. Restrictions apply.

