
12 IEEE SOFTWARE | PUBLISHED BY THE IEEE COMPUTER SOCIETY 0 7 4 0 - 7 4 5 9 / 1 5 / $ 3 1 . 0 0 © 2 0 1 5 I E E E

Editor: Gerard J. Holzmann
NASA/JPL
gholzmann@acm.org

Assertive Testing
Gerard J. Holzmann

RELIABLE CODE

A COLLEAGUE ASKED me recently,
“Are there any generally accepted
methods for accurately predicting
software reliability?” Sadly, the hon-
est answer is no. Surely there are
generally accepted, and practiced,
methods, but no one would claim

that they can make accurate predic-
tions. And if the predictions aren’t
accurate, how useful are they really?

If that sounds overly pessimistic,
it’s because the question was phrased
more or less as an absolute. Instead
of asking whether methods exist that
can predict reliability accurately, it’s
perhaps more helpful to ask whether
methods exist that can improve reli-

ability. Here we’re on � rmer ground.
Indeed, generally accepted methods
exist that can measurably improve
reliability. Software testing is an ob-
vious example of such a method, but
not the only, and perhaps not even
the best, such method. Here, I look

at simple, effective ways to augment
standard software testing.

Measuring Reliability
How can we measure software reli-
ability? Does a generally accepted met-
ric exist? A familiar dictum is “If you
can’t measure it, you can’t manage it.”

Reliability clearly has something
to do with the absence of failures. A

common approach is therefore to de-
� ne reliability by measuring its op-
posite: the probability of failure. This
is similar to trying to de� ne health
as the absence of illness. If you’re
healthy, the probability that you’ll get
sick in some interval of time should
be small, although it likely will never
be zero. So it is for software.

To measure a software applica-
tion’s reliability, then, we can try to
express the rate of discovery of de-
fects that might lead to failure as a
probability.

For instance, if the long-term
probability of an application exhib-
iting a failure is p, that application’s
reliability (the probability of failure-
free operation) is 1 – p. If p is 10–9

per hour of operation, we shouldn’t
expect to see more than one failure
per 100,000 years of operation on
average, which should satisfy even
the most demanding applications.

Reaching that target of 10–9 fail-
ures per hour can be extraordinarily
dif� cult. For instance, a recent gov-
ernment report speci� ed the required

If you can’t measure it,
you can’t manage it.

Authorized licensed use limited to: University of London: Online Library. Downloaded on April 26,2022 at 16:07:19 UTC from IEEE Xplore. Restrictions apply.

RELIABLE CODE

	 MAY/JUNE 2015 | IEEE SOFTWARE � 13

period of failure-free operation for
conventional takeoffs and landings
of the F35 Joint Strike Fighter not
as 100,000 years but as six hours.1
This corresponds to an average
probability of failure about eight or-
ders of magnitude larger than 10–9.
The report also noted that this target
hadn’t yet been realized.

Latent Defects
Software failures are caused by cod-
ing or design defects that could have
been caught if the right type of check
had been performed before an appli-
cation was released for general use.
For a commercial company it’s of-
ten not cost-effective to chase down
every last bug before a product is
shipped. This means that in a fixed
time period and with a fixed testing
budget, only the more likely types of
defects are typically caught. The re-
maining bugs are commonly called
latent defects.

It won’t surprise anyone to learn
that the number of latent defects in
any nontrivial application typically
outnumbers the number of discov-
ered defects by a large margin, no
matter how long the application has
been in use. Of course, the more us-
ers there are and the longer an ap-
plication is used, the more latent de-
fects will be found.

Probability and Impact
We can categorize software defects
by their probability of occurrence or
potential impact (see Figure 1).

Most defects are minor glitches
that don’t significantly affect users,
although they can of course nega-
tively affect the users’ perception of
code quality. Those defects fall on
the left of the vertical line in Fig-
ure 1. The most likely glitches, on
the upper left, are reliably caught in
a standard software test regimen.

The more problematic software de-
fects are those that do have a sig-
nificant impact. Again, the ones that
will likely strike, in the upper right
of Figure 1, can be expected to be
caught early. That leaves the set of
lower-probability defects with po-
tentially significant impact, in the
lower right of Figure 1.

An uncomfortably large propor-
tion of the major software failures
that we learn about with some reg-
ularity tends to fall into this lower-
right quadrant. Often, such failures
are caused by unexpected combina-
tions of low-probability events that
can push a system beyond its design
limits. For instance, the failure of a
hardware component can occur dur-
ing the execution of a fault-handling
procedure for some unrelated off-
nominal event. All of a sudden, the
system can then enter a failure mode
that was never tested.

It’s generally not a good idea to
ignore potential failures simply be-
cause their probability of occur-
rence is deemed low. As C. Michael
Holloway, a researcher at NASA
Langley Research Center, said, “To
a first approximation, we can say
that accidents are almost always the
result of incorrect estimates of the
likelihood of one or more things.”2
We’re good at estimating conse-
quences, but we’re bad at estimat-
ing probabilities.

Formal methods target the dis-
covery of these low-probability but
major-impact defects. Compared
to standard software testing meth-
ods, though, they can be harder to
use. For critical systems, therefore,
the use of formal methods is often
restricted to a relatively small num-
ber of critical modules. But is there
then no middle ground between a
pure formal-methods approach that
leaves no stone unturned, but re-

quires more skill, and a more routine
approach to software testing? There
is, and that’s what I talk about next.

Getting Testy
Let’s first consider how to make stan-
dard software-testing approaches
more thorough simply by providing a
little more structure and diversity. I’ll
mention just some of the many pos-
sible techniques of this type that can
improve a test suite’s effectiveness.

You can structure a software test
beyond the familiar phases of unit,
system, and acceptance testing. A
more structured approach consists of
five additional steps that you can use
in each of the standard testing phases:

	 1.	Ideal conditions. Test the code
under ideal conditions, to ensure
that at the very least it can be-
have as designed.

	 2.	Nominal execution. If the
code passes step 1, test it under
nominal conditions—the condi-
tions it should encounter in nor-
mal day-to-day use.

Likely

Unlikely

Negligible impact Major impact

Strength of formal methods

Strength of standard testing

FIGURE 1. The probability and impact

of software defects. An uncomfortably

large proportion of the major software

failures that we regularly learn about tends

to fall into the lower-right quadrant.

Authorized licensed use limited to: University of London: Online Library. Downloaded on April 26,2022 at 16:07:19 UTC from IEEE Xplore. Restrictions apply.

RELIABLE CODE

14 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

3. Boundary cases. Test the code
for the correct handling of
boundary conditions, where the
code is exercised at the edge of
its operational pro� le.

4. Stress testing. Test the code un-
der stress or overload conditions.

5. Error handling. Test the code for
the correct handling of all con-
ceivable error conditions, such
as invalid inputs, and ideally for
different combinations of com-
ponent failures.

Error-handling code is often the
least thoroughly tested part of any
software system and therefore the
most likely to contain latent defects.
This is precisely the part of the sys-
tem you want to be the most robust,
but it rarely is. An effective technique
in this stage is to use test randomiza-
tion, also called fuzz testing, which
has proven remarkably effective in
� nding unsuspected breaking points.

Another way to improve the rigor
of software testing is to use model-
based testing. First, the system en-
gineer or software developer con-
structs a high-level model of how

the software should work. This
high-level model can then be used to
derive, often automatically, a suite
of test cases. The model should en-
capsulate as many software require-
ments as possible, which means that
the tests can check that the require-
ments are met. If the tests gener-

ated from the high-level model don’t
cover all of the code, the model is
incomplete and should be extended.
It’s also possible that the software
contains too many parts that are
unrelated to the software require-
ments. This can mean that you
should delete them to slim the code
base down to a more manageable
(and testable) size.

In running the tests, look for
cases in which the results differ from
the model’s predictions. The prob-
lem can be with the model, the soft-
ware, or the requirements. Model-
based testing can also make it easier
for formal-methods types like me to
apply more rigorous forms of soft-
ware veri� cation—for instance, with
the help of logic-model checkers.

Assert Yourself
Another way to improve the thor-
oughness of a software test, and
with it the reliability of the target ap-
plication, is relatively simple: use as-
sertions. As a rule of thumb, aim for
an average assertion density of one
to two percent across all your code.
If you follow this rule, you won’t be

alone: Microsoft follows it in the Of-
� ce software suite,3 and NASA’s Jet
Propulsion Laboratory (JPL) uses it
in the development of its mission-
critical � ight code.

Using assertions can ensure that
you catch defects at the earliest pos-
sible point in an execution, not only

during normal system test phases
but also later, when your code has
reached the end user.

For instance, you can place an
assertion in the body of every loop
in the code, to ensure that a reason-
able maximum number of iterations
is never exceeded. You’d be surprised
how many bugs this one measure
can catch early in software develop-
ment. If you’re unsure about what
upper bound to use, multiply your
most generous guess by a thousand
or more. The real problem you’re de-
fending against is an execution get-
ting stuck in an in� nite loop—for
instance, when a linked list acciden-
tally becomes circular.

Another good strategy is to place
an assertion before every division op-
eration, to ensure you’re not acciden-
tally dividing by zero or a number
very close to zero. Similarly, place an
assertion before pointer dereference
operations, to check that they can’t
cause a crash. You can use asser-
tions similarly to check that param-
eters passed to a function are in a
safe range or that the result returned
to a caller passes a sanity check. If
you’re worried that in a time-critical
system, you can’t afford the cost of
evaluating a few extra Boolean ex-
pressions, you’re operating too close
to the margin. You should take this
as an indication that it’s time to
refactor the code. No policeman will
be persuaded either if you claim that
you had no time to stop at a red traf-
� c light.

Statement Coverage
A common goal in testing, inspired
by guidelines such as DO-178B/C
(which deals with software safety
for airborne systems), is to ensure
that all your tests combined secure
full statement and branch coverage.
This means that each statement in

Another way to improve
the rigor of software testing
is to use model-based testing.

Authorized licensed use limited to: University of London: Online Library. Downloaded on April 26,2022 at 16:07:19 UTC from IEEE Xplore. Restrictions apply.

RELIABLE CODE

	 MAY/JUNE 2015 | IEEE SOFTWARE � 15

your code must be exercised by at
least one test, and every clause in
every conditional test must indepen-
dently evaluate to true and to false in
at least one test. What’s sometimes
forgotten is that it’s not enough to
merely execute a statement; a test
must also actually check something.
This is where assertions can again
prove their value: they provide some
additional independent checks of an
execution’s sanity.

The insight that assertions can
help make systems more reliable isn’t
new, of course. The familiar include
file <assert.h>, with the definition of a
few macros to support the use of as-
sertions in C code, was added to the
Unix C compilers as early as 1978.
Mike Lesk (also responsible for the
Unix tools lex and uucp) first added
this file as one of several improve-
ments he made to the C preprocessor.

An assert keyword appeared ear-
lier in the 1972 definition of Algol
W. The language report on Algol
68, to which Algol W was in many
ways a response, also contained a
notation for defining inline asser-
tions. They were called “pragmats”
in the Revised Report on the Algo-
rithmic Language Algol 68.4 Like
modern pragmas in C code, though,
they were technically outside the
language definition and could freely
be ignored by the compiler. Earlier
still, we find references to the impor-
tance of assertions in the writings
of both Alan Turing and John von
Neumann, as Lori Clarke and David
Rosenblum noted.5

S o now it’s your turn again.
Does your regression test
suite (you do have one, don’t

you?) have any tests that fail to ex-
ecute assertions? You can strengthen
your tests by ensuring that they all do.

And, oh yeah, don’t disable those
carefully crafted assertions when
you ship a product to your custom-
ers. Microsoft doesn’t do so in Of-
fice, and neither does JPL when its
embedded software hitches a ride
to Mars. The assertions can help
you detect, diagnose, and fix the la-
tent defects in your code before they
can do harm. In a sense, removing
or disabling software assertions be-
fore shipping a system to customers
would make as much sense as a car
maker removing the seatbelts and
airbags from a car after all crash
tests have been completed.

References
	 1.	 F-35 Joint Strike Fighter: Problems

Completing Software Testing May Hinder
Delivery of Expected Warfighting Capa-
bilities, GAO-14-322, US Government
Accountability Office, Mar. 2014, p. 18;
www.gao.gov/assets/670/661842.pdf.

	 2.	 C.M. Holloway, “Why You Should Read

Accident Reports,” presentation at the
Software and Complex Electronic Hard-
ware Standardization Conf., 2005.

	 3.	 C.A.R. Hoare, “Assertions: A Personal
Perspective,” IEEE Annals of the History
of Computing, vol. 25, no. 2, 2003, pp.
14–25.

	 4.	 A. Van Wijngaarden, B.J. Mailloux,
and J.E.L. Peck, Revised Report on the
Algorithmic Language Algol 68, Springer,
1976.

	 5.	 L.A. Clarke and D.S. Rosenblum, “A
Historical Perspective on Runtime Asser-
tion Checking in Software Development,”
ACM SIGSOFT Software Eng. Notes, vol.
31, no. 3, 2006, pp. 25–37.

GERARD J. HOLZMANN works at the Jet
Propulsion Laboratory on developing stronger
methods for software analysis, code review, and
testing. Contact him at gholzmann@acm.org.

Selected CS articles and columns
are also available for free at
http://ComputingNow.computer.org.

IEEE Software seeks practical, readable

articles that will appeal to experts and nonexperts

alike. The magazine aims to deliver reliable

information to software developers and managers to

help them stay on top of rapid technology change.

Submissions must be original and no more than 4,700

words, including 200 words for each table and fi gure.

Author guidelines: www.computer.org/software/author.htm

Further details: software@computer.org

www.computer.org/software

Call for Articles

Authorized licensed use limited to: University of London: Online Library. Downloaded on April 26,2022 at 16:07:19 UTC from IEEE Xplore. Restrictions apply.

