
My interest in assertions and their role in pro-
gram proofs was triggered by my early industry
experience; subsequently, through my univer-
sity research, I extended the concept into a
methodology for program specification and
design. Now that I have returned to industrial
employment, I’ve had the opportunity to
investigate the current role of assertions in
industrial program development. My personal
perspective illustrates the complementary roles
of pure research, aimed at academic ideals of
excellence, and the unexpected ways in which
the results of such research contribute to the
gradual improvement of engineering practice.

Experience in industry, 1960–1968
My first job was as a programmer for a small

British computer manufacturer, Elliott Brothers
of London. My task was to write library pro-
grams in decimal machine code1 for the com-
pany’s new 803 computer (see Figure 1). After
a preliminary exercise that gave my boss confi-
dence in my skill, I was entrusted with imple-
menting a new sorting method recently
invented and published by Donald Shell.2 I
enjoyed optimizing the inner loops of my pro-
gram to exploit the machine code’s most
ingenious instructions. I also enjoyed docu-
menting the code according to the company’s
standards for customer products. Even testing
the program was fun; tracing the errors was like
solving mathematical puzzles. How wonderful
that programmers get paid for that too! In fair-
ness, I thought, the programmers should pay

back to their employers the cost for removal of
their own mistakes.

What wasn’t such fun was the kind of error
that caused my test programs to run wild and
crash; often, errors overwrote the data needed
to diagnose the cause of the error. Was the
crash due perhaps to a jump into the data space
or to an instruction overwritten by a number?
The only way to find out was to add extra out-
put instructions to the program, tracing its
behavior up to the moment of the crash. But
the sheer volume of the output only added to
the confusion. Remember, in those days the
lucky programmer was one who had access to
the computer just once a day. Even 40 years
later, the problem of crashing programs is not
altogether solved.

After six months on the job, I was assigned
an even more important task—that of design-
ing a new high-level programming language for
the company’s newer, faster computers. By good
fortune, I happened to acquire a copy of Peter
Naur’s “Report on the Algorithmic Language
Algol 60,”3 which had recently been designed
by an international committee of experts. The
company decided to implement a subset of that
language, which I selected with the goal of effi-
cient implementation on the Elliott computers.
In the end, I thought of an efficient way of
implementing nearly the whole language.

An outstanding merit of Naur’s report was
that it was only 21 pages long, yet it was suffi-
ciently informative to write a compiler for the
language without any communication with the
language designers. Furthermore, a program-
mer could program in the language without
any communication either with the compiler
writers or designers. Even so, it was possible for
the program to work the first time it was sub-
mitted to the newly implemented compiler.
And, in fact, apart from a small error in the
character codes, we did get one of our cus-
tomers’ programs to work the first time at an

Assertions: A Personal Perspective
C.A.R. Hoare
Microsoft Research

Assertions are Boolean formulas placed in program text at places
where their evaluation will always be true. If the assertions are strong
enough, they express everything that the programmers on either side
of an interface need to know about the program on the other side,
even before the code is written. Indeed, assertions can serve as the
basis of a formal proof of the correctness of a complete program.

14 IEEE Annals of the History of Computing Published by the IEEE Computer Society 1058-6180/03/$17.00 © 2003 IEEE

Editor’s Note
This article is based on the Laureate

Lecture delivered on 12 November 2000 at a
symposium organized by Akinori Yonezawa
on the occasion of the award of the Kyoto
Prize for Advanced Technology.

exhibition of an Elliott 803 computer in
Eastern Europe. Few languages designed since
then have enabled compiler writers and pro-
grammers to match such an achievement.

Part of the credit for this success was the com-
pact yet precise notation for the grammar or syn-
tax of the language, which defines the class of
texts that are worthy of consideration as mean-
ingful programs. This notation was due original-
ly to Noam Chomsky, the great linguist,
psychologist, and philosopher.4 John Backus first
applied the notation to programming languages,
in a 1959 article on the syntax and semantics of
the proposed language of the Zurich ACM-
GAMM Conference.5 After dealing with the syn-
tax, Backus anticipated a continuation article on
the semantics. It never appeared. In fact, the
original article challenged researchers to find a
precise and elegant formal definition of the
meaning of programs, which inspires solid
research in computer science even today.

The syntactic definition of the language
served as a pattern for the structure of our Algol
compiler, which used recursive descent. As a
result, it was logically impossible (almost) for
any error in a submitted program’s syntax to
escape detection by the compiler. If a success-
fully compiled program went wrong, the pro-
grammer had complete confidence that the
cause was not the result of a misprint that
made the program meaningless.

Chomsky’s syntactic definition method was
soon more widely applied to other program-
ming languages, with results that were rarely as
attractive as for Algol 60. I thought that this
failure reflected the intrinsic irregularity and
ugliness of the syntax of these other languages.
One purpose of a good formal definition
method is to guide the designer to improve the
quality of the language it’s used to define.

Object code design
In designing the machine-executable object

code to be output by the Elliott Algol compil-
er,6 I believed that no program compiled from
the high-level language should ever run wild.
Our customers had to accept a significant per-
formance penalty because every subscripted
array access had to be checked at runtime
against both upper and lower array bounds.
They knew how often such a check fails in a
production run, and they told me later that
they didn’t want even the option to remove the
check. As a result, programs written in Algol
would never run wild, and debugging was rel-
atively simple, because a programmer could
infer the effect of every program from the pro-
gram’s source text without knowing anything

about the compiler or about the machine on
which it was running. If only we had a formal
semantics, I thought, to complement the lan-
guage’s formal syntax, perhaps the compiler
would be able to help in detecting and averting
other kinds of programming error as well.

Interest in semantics was widespread. In
1964, 51 scientists from 12 nations attended a
Vienna conference on formal language descrip-
tion languages.7 One of the papers was “The
Definition of Programming Languages by their
Compilers,”8 by Jan Garwick, pioneer of com-
puting science in Norway. The title appalled me
because it suggested that the meaning of any
program is determined by selecting a standard
implementation of that language on a particu-
lar machine. So if you wanted to know the
meaning of a Fortran program, for example,
you’d run it on an IBM 709 and see what hap-
pened. Such a proposal seemed to me grossly
unfair to all computer manufacturers other
than IBM, at that time the world-dominant
computing company. It would be impossibly
expensive and counterproductive on an Elliott
803, with a word length of 39 bits, to give the
same numerical answers as the IBM machine,
which had only 36 bits in a word—we could
more efficiently give greater accuracy and range
for integers and floating-point numbers.

Even more unfair was the consequence that
the IBM compiler was by definition correct; but
any other manufacturer would be compelled to
reproduce all of its errors—they would have to
be called just anomalies—because errors would
be logically impossible. Since then, I have
always avoided operational approaches to pro-
gramming language semantics. The principle
that “a program is what a program does” is not

April–June 2003 15

Figure 1. An early 803 computer in typical surroundings.
(Courtesy of Museu Virtual de Informática da Universidade
do Minho, Portugal, http://www.dsi.uminho.pt/museuv/.)

a good basis for exploring the concept of pro-
gram correctness.

I didn’t make a presentation at the Vienna
conference, but I did make one comment: I
thought that the most important attribute of a
formal definition of semantics should be to leave
certain aspects of the language carefully unde-
fined. As a result, each implementation would
have carefully circumscribed freedom to make
efficient choices in the interests of its users and
in light of the characteristics of a particular
machine architecture. I was encouraged that this
comment was applauded, and even Garwick
expressed his agreement. (In fact, I had misin-
terpreted his title. His paper called for an abstract
compiler for an abstract machine, rather than
selecting a commercial product as a standard.)

The inspiration of my remark in Vienna
dates back to 1952, when I was an undergrad-
uate student at Oxford University. Some of my
neighbors in college were mathematicians, and
I joined them in a small, unofficial nighttime
reading party to study mathematical logic from
the textbook by Willard Van Orman Quine.9

Later, a course in the philosophy of mathemat-
ics pursued more deeply this interest in axioms
and proofs, as an explanation of the unreason-
able degree of certainty that accompanies the
contemplation of mathematical truth.

The axiomatic method
It was this background that led me to propose

the axiomatic method for defining the semantics
of a programming language while preserving a
carefully controlled vagueness in certain aspects.
I drew an analogy with the foundations of the
various branches of mathematics, like projective
geometry or group theory; each branch is in
effect defined by the set of axioms that are used
without further justification in all proofs of the
theorems of that branch. The axioms are written
in common mathematical notations, but they
also contain undefined terms, like lines and
points in projective geometry, or units and prod-
ucts in group theory; these constitute the con-
ceptual framework of that branch. I was
convinced that an axiomatic presentation of
basic programming concepts would be much
simpler than any compiler of any language for
any computer, however abstract.

I still believe that axioms provide an excel-
lent interface between the roles of the pure
mathematician and the applied mathematician.
The pure mathematician deliberately gives no
explicit meaning to the undefined terms appear-
ing in the axioms, theorems, and proofs. It is the
task of the applied mathematician and the
experimental scientist to find in the real world

a possible meaning for the terms and check by
carefully designed experiment that this mean-
ing satisfies the axioms. The engineer is even
allowed to take the axioms as a specification that
must be met by a product design—for example,
the compiler for a programming language. Then
all the theorems for that branch of pure mathe-
matics can be validly applied to the product or
to the relevant real-world domain. And surpris-
ingly often, the pure mathematician’s more
abstract approach is rewarded by the discovery
that the same axiom set has many different
applications. By analogy, there could be many
different implementations of the axiom set that
defines a standard programming language. That
was exactly the carefully circumscribed freedom
that I wanted for the compiler writer, who has
to take on the engineer’s typical responsibility
that the implementation satisfies the axioms as
well as efficiently running its users’ programs.

My first proposal for such an axiom set took
the form of equations, as encountered in algebra
textbooks, but with program fragments on the
left- and right-hand sides of the equation instead
of numbers and numeric expressions. The same
idea was explored earlier and more thoroughly
in a doctoral dissertation by Shigeru Igarashi at
the University of Tokyo.10 In November 1967, I
showed my first draft of a paper on the axiomat-
ic approach to Peter Lucas; he was leading a proj-
ect at the IBM Research Laboratory in Vienna to
formally define IBM’s new programming lan-
guage, later known as PL/I.11 Lucas was attracted
by the proposal but soon abandoned the attempt
to apply it to PL/I as a whole. The PL/I designers
had an operational view of what each language
construct would do, and they had no inclination
to support a level of abstraction necessary for an
attractive or helpful axiomatic presentation of
the semantics. I was not disappointed. In the
arrogance of idealism, I was confirmed in my
view that a good formal definition method
would be one that clearly reveals the quality of a
programming language, whether bad or good;
the axiomatic method had shown its capability
of at least revealing badness. And I regarded PL/I
as a bad language because it gave little protection
against crashing programs.

Research in Belfast, 1968–1977
By 1968, it was evident that research into

programming language semantics was going to
take a long time before it found application in
industry—in those days, it was accepted that
long-term research should take place in univer-
sities. I therefore welcomed the opportunity to
move to the Queen’s University in Belfast as
professor of computer science. During this time,

16 IEEE Annals of the History of Computing

Assertions: A Personal Perspective

I came across a preprint of Robert Floyd’s paper,
“Assigning Meanings to Programs.”12 Floyd
adopted the same philosophy as I had, that the
meaning of a programming language is defined
by the rules that can be used for reasoning
about programs in the language. These could
include not only equations but also rules of
inference. In his paper, Floyd presented an
effective method of proving the total correct-
ness of programs, not just their equality to other
programs (see Figure 2 for an example). I saw
this as the achievement of the ultimate goal of a
good formal semantics for a good programming
language, namely, the complete avoidance of
programming error. Furthermore, the language
quality was now the subject of objective scien-
tific assessment, based on simplicity of the
axioms and the guidance they give for program
construction. The axiomatic method is a way to
avoid the dogmatism and controversy that so
often accompanies programming language
design, particularly by committees.

For a general-purpose programming lan-
guage, correctness can be defined only relative
to the intention of a particular program. In
many cases, the intention can be expressed as a
postcondition of the program, that is, an asser-
tion (about the values of the program variables)
intended to be true when the program termi-
nates. The proof of this fact usually depends on
annotating the program with additional asser-
tions in the middle of the program text; these
are expected to be true whenever program exe-
cution reaches the point where the assertion is
written. At least one assertion, called an invari-
ant, is needed in each loop: It is intended to be
true before and after every execution of the loop
body. Often, the correct working of a program
depends on the assumption of some precondi-
tion, which must be true before the program
starts. Floyd gave the proof rules whose appli-
cation could guarantee the validity of all the
assertions except the precondition, which had
to be assumed. He even anticipated the day
when a verifying compiler could automatically
validate the assertions before running the pro-
gram. This would be the ultimate solution to
the problem of programming error, making it
logically impossible in a running program. I
correctly predicted its achievement would occur
after I had retired from academic life, which
would be in 30 years’ time.

Lifelong research project
The first paper that I wrote as a professor in

Belfast was a complete rewrite of my earlier
drafts expounding and extolling the axiomatic
method. Figure 3 shows a page from the man-

April–June 2003 17

ASSERT divisor > 0 ;
remainder := dividend ; quotient := 0 ;
INVARIANT dividend == quotient ∗ divisor + remainder ;
while divisor < remainder do

{remainder := remainder − divisor ;
quotient := quotient + 1 }

ASSERT remainder < divisor &
dividend == quotient ∗ divisor + remainder

Figure 2. This was the first program that I proved correct. It
performs positive integer division by the lengthy process of
counting the number of times the divisor can be subtracted
from the dividend. The assertion at the beginning states the
precondition, which the user of the routine must guarantee
before entry. The final assertion describes the postcondition
that the routine will make true on exit. The invariant in the
middle is true before and after every iteration of the loop. It
is a key to the proof that explains why the loop works.

Figure 3. A page from my manuscript on the axiomatic method.
(Source: C.A.R. Hoare.)

uscript of my article draft.13 This was the start
of a lifelong research project; it was followed by
articles that extended the set of axioms and
rules to cover all the familiar constructions of
a conventional high-level programming lan-
guage. These included iterations, procedures
and parameters, recursion, functions, and even
jumps.13-18

Eventually, there were enough proof rules to
cover almost all of a reasonable programming
language, like Pascal, for which I developed a
proof calculus in collaboration with Niklaus
Wirth.19 Figure 4 shows the letter to him that
accompanied my first tentative draft.

Since the late 1960s, developers have used
the axiomatic method in designing languages
like Euclid and Eiffel.20,21 These languages were
prepared to accept the restrictions on the gen-
erality of expression that are necessary to make

the axioms consistent with efficient program
execution. For example, the body of an itera-
tion (for statement) should not assign a new
value to the controlled variable; the parameters
of a procedure should be distinct from each
other, no aliases; and all jumps should be for-
ward rather than backward. I recommended
that these restrictions should be incorporated
in the design of any future programming lan-
guage; they were all of a kind that a compiler
could enforce, to avert the risk of programming
error. Restrictions that contribute to provabili-
ty, I claimed, are what make a programming
language good. They often make the program
more efficient, too.

I was even worried that my axiomatic
method was too powerful because it could deal
with jumps, which Edsger W. Dijkstra had iden-
tified in 1968 as a bad feature of contemporary
programming.22 My consolation was that the
proof rule for jumps relies on a subsidiary
hypothesis and is inherently more complicat-
ed than the rules for structured programming
constructs. Subsequent wide adoption of struc-
tured programming confirmed my view that
simplicity of the relevant proof rule is an objec-
tive measure of quality in a programming lan-
guage feature. Further confirmation is provided
by program analysis tools, like Lint23 and
Prefix,24 applied to less disciplined languages
such as C. These tools identify those construc-
tions that would invalidate the simple and
obvious proof methods, and warn the pro-
grammer against their use.

A common objection to Floyd’s method of
program proving was the need to supply addi-
tional assertions at intermediate points in the
program. It is difficult to look at an existing
program and guess what these assertions
should be. I thought this was an entirely mis-
taken objection. It wasn’t sensible to try to
prove the correctness of existing programs,
partly because they were mostly going to be
incorrect anyway. I followed Dijkstra’s con-
structive approach25 to the task of program-
ming. The obligation of ultimate correctness
should be the driving force in designing pro-
grams that are going to be correct by construc-
tion. In this top-down approach, the starting
point for a software project should always be
the specification, and the program proof
should be developed along with the program.
Thus, the most effective proofs are those con-
structed before the program is written. This
philosophy has been beautifully illustrated in
Dijkstra’s A Discipline of Programming26 and in
many subsequent textbooks on formal
approaches to software engineering.27

18 IEEE Annals of the History of Computing

Assertions: A Personal Perspective

Figure 4. The letter I wrote to Niklaus Wirth about my manuscript on
an axiomatic definition of the programming language Pascal. (Source:
C.A.R. Hoare.)

Concurrent program execution
In all my work on the formalization of proof

methods for sequential programming lan-
guages, I knew that I was only preparing the
way for a much more serious challenge, which
was to extend the proof technology into the
realm of concurrent program execution. In the
early 1970s, I took as my first model of concur-
rency a kind of quasi-parallel programming,
coroutines, which was introduced by Ole-Johan
Dahl and Kristen Nygaard into Simula, and
later Simula 67, for discrete event simula-
tion.28,29 I knew the Simula concept of an
object as a replicable data structure, declared in
a class together with the methods that are
allowed to update its attributes. As an exercise
in the application of these ideas, I took the
structured implementation of a paging system:
virtual memory (see Figure 5).

I suddenly realized that the purpose and cri-
terion of this program’s correctness was to sim-
ulate the more abstract concept of a single-level
memory, with a much wider addressing range
than could be physically fitted into the com-
puter’s random access memory. The concept
had to be represented in a complicated (but for-
tunately concealed) way, by storing temporarily
unused data on a disk.30 The code correctness
could be proved with the aid of an invariant
assertion, later known as the abstraction invari-
ant, that connects the abstract variable to its
concrete representation.31 The introduction of
such abstractions into programming practice is
one of the main achievements of the still-
current craze for object-oriented programming.

The real insight that I derived from this exer-
cise was that exactly the same proof was valid,
not only for sequential use of the virtual memo-
ry, but also for its use by many processes running
concurrently. As with proof-driven program
development, it’s the obligation of correctness
that should drive the design of a good program-
ming language feature. Of course, implementa-
tion efficiency is also important. A correct
implementation of the abstraction must prevent
more than one process from updating the con-
crete representation at the same time. This is effi-
ciently done by use of Dijkstra’s semaphores
protecting critical regions;32 the resulting struc-
ture was called a monitor.33,34 The idea was simul-
taneously put forward and successfully tested in
an efficient implementation of Concurrent
Pascal by Per Brinch Hansen, a leading Danish
computer scientist, who has made his career in
the US.35 The monitor has since been adopted for
concurrency control by the more recently fash-
ionable language Java,36 but with extensions that
prevent the use of the original simple proof rules.

Testing my ideas
To test the applicability of these ideas, I used

them to design the structure of a simple batch-
processed operating system.37 Jim Welsh and
Dave Bustard, recent doctoral graduates of the
Queen’s University, implemented the system in
an extended version of Pascal, called Pascal Plus,
which they also designed and implemented.38

We used the inner statement of Simula 67,
which enables the code of a user process to be
embedded deep inside an envelope of code that
implements the abstract resources it uses. The
same effect is achieved in object-oriented lan-
guages today by methods that initialize and
finalize the object. In Simula, the semantics of
the inner statement is described like that of the
Algol 60 procedure call, and like inheritance in
current object-oriented languages, in terms of
copying textual portions of the user program
inside the object code that it’s using.

Dijkstra explained to me that such a copy rule
completely fails to explain or exploit the real
merit of the language feature, which is to raise the
program’s level of abstraction. We spent some
time together at the 1975 Marktoberdorf Summer
School in Germany, exploring the underlying
abstraction, and designing notations that would
most clearly express it. But I spent several more
years of personal research on the topic, and I was
still not satisfied with my progress. Inspiration
eventually came from an unexpected direction.

At that time, the promise of very large scale
integration was beginning to materialize as low-
cost microprocessors. To multiply their somewhat
modest computing power, researchers found it an
attractive prospect to connect several such

April–June 2003 19

{ram:real_addr → word; cache:word ;
disk:sector_addr → sector ; page-tables, tags, etc.;
ASSERT virtual_memory: virtual_addr → word;
INVARIANT virtual_memory ==

a function of ram, disk, etc...;
method fetch(i:virtual_addr);

ASSERT cache := virtual_memory[i];
method assign(i:virtual_addr);;

ASSERT virtual_memory[i] := cache ; }

Figure 5. This is the skeleton of my proof of correctness of
an implementation of virtual memory. The abstract memory
is declared in an assertion as an array of machine words. The
invariant describes how the abstract memory is concretely
represented as a complicated function of page tables in
RAM and content on disk. The invariant is true before and
after every fetch and assignment to the memory. The
purpose of each of these methods is described as an
assignment involving the abstract virtual memory. The body
of these methods (omitted above) is proved to have the
corresponding effect on the concrete representation.

machines by wires along which the microproces-
sors could communicate with each other during
program execution. To write programs for such an
assembly of machines, a programmer would need
a language that included input and output com-
mands; these removed the need for an explana-
tion by textual copying. But shared memory was
too expensive and thus was ruled out, and with-
out shared memory, monitors were unnecessary.

An obvious requirement for a parallel pro-
gramming language is a means of connecting
two program fragments in parallel, rather than
in series. Naturally I chose the structured paral-
lel command (parbegin … parend) suggested
by Dijkstra,32 rather than the jumplike forking
primitive made popular by C and Unix. I also
included a variant of Dijkstra’s guarded com-
mand,39 enabling a program to reduce latency
by waiting for the first of two or more inputs to
become available. The resulting program struc-
tures were known as communicating sequential
processes (CSP).40 To answer the question of the
features’ sufficiency, I showed that they could
easily encode many other useful programming
language constructions, both sequential and
parallel. These included semaphores, subrou-
tines, coroutines, and of course monitors.

I was happy with the unification of program-
ming concepts that I had achieved, but dissatis-
fied that I had no means of proving the
correctness of the programs that used them.
Furthermore, I left open numerous language
design decisions, which I wanted to resolve by
investigating their impact on the ease of proving
programs correct. I hoped that a communicating
process could be understood in terms of the trace,
or history, of all the communications in which it
could engage. On this basis, I found it was possi-
ble to get proofs of partial correctness, but only
by ignoring problems of nontermination and of
nondeterministic deadlock, which causes a com-
puter to stop when a cycle of processes are each
waiting for its neighbor. I was by then ashamed
that I had ignored such problems in my early
exposition of Floyd’s proof method. Fortunately,
Dijkstra had shown in his book on programming
discipline26 how to deal safely with the problem
of nondeterminism. He assumed that it would be
resolved maliciously by a demon, intent on frus-
trating our intentions, whatever they might be.
He also dealt correctly with the problem of non-
termination. Now I resolved that any acceptable
proof method for CSP would have to incorporate
Dijkstra’s solutions.

Move to Oxford, 1977–1999
In 1977, an opportunity arose to move to

Oxford University, where I wanted to study the

methods of denotational semantics that
Christopher Strachey and Dana Scott had pio-
neered, and ably expounded in a textbook by
Joe Stoy.41 Among my first research students,
jointly supervised with Stoy, were a couple of
brilliant mathematicians, Bill Roscoe and Steve
Brookes. We followed the suggestion of Robin
Milner that the meaning of a concurrent pro-
gram could be determined by the collection of
tests that could be made on it. Following Karl
Popper’s criterion of falsification for the mean-
ing of a scientific theory, Roscoe and Brookes
concentrated on failures of these tests, with
particular attention to the circumstances in
which they could deadlock or fail to terminate.
This led to the now standard model of CSP,
with traces, refusals, and divergences.42,43

This research found remarkably early appli-
cation in industry. Iann Barron, who had earli-
er worked for Elliott Brothers on the design of
the 803 computer, was inspired by the vision of
a new computer architecture, the transputer,
which he defined as a complete microproces-
sor, communicating with its neighbors in a net-
work by input and output along simple wires.44

In 1976–1977, he started the company Inmos,
to design and make the hardware; he hired
David May as its chief architect, and he hired
me as a consultant to design a programming
language based on CSP to control it. The lan-
guage was named occam,45,46 after the medieval
Oxford philosopher, who proposed simplicity
as the ultimate touchstone of truth.

An important commercial goal of the com-
pany was to ensure that the same parallel pro-
gram would have logically the same effect
when implemented by multiprogramming on
a single computer as when distributed over
multiple processors on a network. CSP’s level of
abstraction gave just this assurance. For 10
years or more, the transputer enjoyed com-
mercial success and the language excited scien-
tific interest. Today’s advances, however, in
microprocessor power, storage capacity, and
network communications technology favor a
more dynamic model of network configuration
and a buffered model of communication,
which are more directly represented in recent
process algebras, like the pi-calculus.47

Fundamental to the philosophy of top-down
program development from program specifica-
tions is the ability of programmers to write the
specifications in the first place. Obviously, these
specifications must be at least an order of mag-
nitude simpler and more obviously correct than
the eventual program is going to be. In the
1980s, it was accepted wisdom that the lan-
guage for writing specifications should itself be

20 IEEE Annals of the History of Computing

Assertions: A Personal Perspective

executable, making it, in effect, just another
more powerful programming language. But I
knew that, in principle, a language like that of
set theory, untrammeled by considerations of
execution or of efficiency, could express many
important abstract concepts far more concisely
than any executable language. I believed that
these concepts drawn from mathematics would
make it easier to reason about the correctness of
the program at the design stage.

There’s no conceivable way to prove a speci-
fication correct—against what specification
would that be? Such a higher-level specification,
if it existed, should have been chosen originally
as the starting place for the design. So the only
hope is for developers to make the original spec-
ification so clear and so easily understandable
that it obviously describes what is wanted, and
not some other thing. That’s why it would be
dangerous to recommend for specification any-
thing less than the full language of mathemat-
ics. Even if this view is impractical, it represents
the kind of extreme in expressive power that
makes it an appropriate topic for academic
research. Certainly, if the basic mathematical
concepts turn out to be inadequate to describe
what is wanted, there is little hope for help from
mathematics in making correct programs.

Uniform notational framework
Mathematicians through the ages have

developed a great many notations, and each
branch of the subject uses the same notations
for different purposes, and unfortunately, dif-
ferent notations for the same purpose. What is
needed for purposes of programming is a uni-
form notational framework to match the gen-
erality of a general-purpose programming
language, and sufficiently powerful for the def-
inition of all concepts of any particular branch
of mathematics that might be relevant to any
computer application in the future. Fortunately,
this was provided by abstract set theory, devel-
oped as a foundation for mathematics by logi-
cians at the beginning of the last century. Set
theory already provides a range of concepts
known to be relevant in computing—Cartesian
products, direct sums, trees, sequences, bags,
sets, functions, and relations.

The same idea had inspired Jean-Raymond
Abrial, a successful French software engineer,
who came to Oxford in the early 1980s to con-
tinue his work on the Z specification lan-
guage.48 The power of the Z notation was first
tested by researchers at Oxford, working on
small tutorial examples. Many improvements
resulted, both in notation and style of usage.
But the crucial question was, Would they pro-

vide any practical benefit when applied to a
large programming project in industry?

In 1981, the IBM development laboratories
in Hursley, UK, placed a research contract with
the Oxford University Computing Laboratory to
support a project led by Ib Sorensen and, later,
Ian Hayes, and in 1983, they began to use Z for
specification. One of the teams at Hursley was
responsible for the development of the
Customer Information and Control System
(CICS), one of IBM’s most successful commercial
software products. IBM was planning the next
release of this system, primarily devoted to the
restructuring of some of its basic components.
For one of the more tricky components, they
bravely decided to try Oxford’s new recom-
mended top-down development method, start-
ing with a specification in Z (see Figure 6). This
involved more work in the early stages of the
project, but it inspired confidence in the sound-
ness of the new structure’s design, and the early
rigorous formalization averted many errors that
might have been troublesome at later stages in
the project. When the product was finally deliv-
ered in 1991, IBM calculated that the develop-
ment costs were less than on components
developed more traditionally, and the quality, as
customers perceived it, was greater.49

The characteristic feature of Z is the schema,
consisting of a declaration of the names of cer-
tain free variables and their types, together
with a predicate expressing a desired invariant
relationship between the values of those vari-
ables. The free variables play the same role as
in a scientific theory—they stand for measure-
ments like time and distance that can be made
in the real world, or (in our application) they
stand for observations of the state or behavior
of computer programs. The meanings of the
variables, and the justification for the invari-

April–June 2003 21

x, x ′ : integer ;

time, time′ : machine cycles

x ′ > x,

time′ - time ≤ 3

Figure 6. A schema in Z is a specification for a fragment of
code. It contains (above the central line) a declaration of the
global variables, with a dash on those variables that stand
for a value at the end of execution; and below the line it
contains a predicate describing the desired relationship
between the initial and final values. The example specifies
an action that strictly increases the value of x , and which
does not take more than three machine cycles to execute.

ants, must be described informally in the
extremely important natural-language prose
that accompanies the specification.

As in science, there are many common con-
ventions. Similarly, in a schema that specifies a
fragment of a sequential program, a dashed
variable x′ always stands for the final value of
a global program variable whose initial value is
denoted by x. It was Cliff Jones, a leader in the
development of the Vienna Development
Method (VDM), who persuaded me of the need
to make explicit both initial and final values of
all the variables.50

The extra flexibility of these extra variables
makes it easy to introduce extensions to the
model of a programming language. For example,
to model timing properties, we just need to
introduce a special real-valued variable called
time. So time′ would be the time at which a pro-
gram terminates, and time would be when it
starts. Of course, the programmer is not allowed
to assign arbitrary values to such a special vari-
able. It can be updated only by special operations
like delay (interval), whose effect is simply mod-
eled by adding the interval to the time; although
the intended implementation is simple—just
wait for the clock on the wall to move on. Such
extra variables played a vital role in my later
attempts at unifying theories of programming.

Like predicates in logic, Z schemas can be
connected by any of the operators of the propo-
sitional calculus: conjunction, disjunction, and
even negation. But the schema calculus also
uses sequential composition; which is defined
in the same way as the binary composition of
relations in relational calculus. The final values
of the variables of the first program (before the
semicolon) are identified with the initial values
of the second program (after the semicolon),
and these intermediate values are hidden by
existential quantification. A careful treatment
of nontermination ensures that the composi-
tion of two schemas accurately describes the
result of sequential execution of any pair of pro-
grams that satisfies those schemas. More for-
mally, if P1 and P2 are programs, and if S1 and
S2 are schemas, then the axiomatic proof rule
for correctness of programs’ sequential compo-
sition can be elegantly expressed as follows:

P1 satisfies S1 P2 satisfies S2

(P1;P2 satisfies (S1;S2)

Simpler semantics
In 1981, Rick Hehner, professor of computer

science at the University of Toronto on a sab-
batical visit to Oxford, came into my office and
spent an embarrassingly long time persuading

me that something much simpler than the
axiomatic proof rules was possible.51,52 His idea
was to simply define the semantics of the pro-
gramming language directly in terms of the
schema calculus of Z. Each program is inter-
preted as the strongest schema describing its
observable behavior on all its possible execu-
tions. As a result, the concept of satisfaction of
a specification can be identified with the most
pervasive concept in all mathematical reason-
ing, that of logical implication.

Furthermore, defining the semantics in
terms of Z’s schema calculus obviates the need
for an axiomatic semantics because all the use-
ful proof rules can themselves be proved as
theorems. All the operators of the program-
ming language are defined simply as operators
on schemas. For example, the definition of
semicolon in the programming language is
identical to its definition I gave in the schema
calculus. The displayed proof rule is no longer
an axiom; it is a proven theorem stating the
simple fact that relational composition is
monotonic in both its operands, with respect
to implication ordering.

From then on, I traveled the world giving a
series of keynote addresses with different illus-
trative examples, but with the same message and
the same title: “Programs are Predicates.”53-55

The first application of this insight into a
simpler semantics definition was to solve the
long-standing problem of the specification and
proof of correctness of communicating
sequential processes. All that’s needed is to
introduce the observable attributes of a
process, its trace, and its refusals, as free vari-
ables of a Z schema. Using predicate calculus,
we then define CSP’s various choice and paral-
lel constructions as operators on schemas. This
insight has inspired all my subsequent
research. In a continuing collaboration with
He Jifeng, a Chinese computing researcher
working at Oxford from 1983 to 1998, we have
developed a specification-oriented semantics
for many other computational paradigms,
including hardware and software, declarative
and procedural paradigms, with sequential and
parallel programming capability.

Even within parallel programming, there are
many variations—some with distributed pro-
cessing, some with shared memory, with dedi-
cated channels or with shared buses for
communication, either with synchronization
or with buffering of messages. It turns out that
there is much commonality between the math-
ematical properties of all paradigms, and this
led us to describe our activity as unifying theo-
ries of programming.56 This work brought to

22 IEEE Annals of the History of Computing

Assertions: A Personal Perspective

fruition a strand of my research that was start-
ed by Peter Lauer, my first doctoral graduate
student in Belfast.57

Research into assertions
That concludes a brief account of my long

research association with assertions. They start-
ed as simple Boolean expressions in a sequen-
tial programming language, testing a property
of a single machine state at the point that con-
trol reaches the assertion. By adding dashed
variables to stand for the values of variables at
program termination, an assertion is general-
ized to a complete specification of an arbitrary
fragment of a sequential program. By adding
variables that record the history of interactions
between a program and its environment, asser-
tions specify the interfaces between concurrent
programs. By defining a program’s semantics as
the strongest assertion that describes all its pos-
sible behaviors, we give a complete method for
proving the total correctness of all programs
expressed in the language.

My interest in assertions was triggered by
problems that I had encountered as a program-
mer in industry. The evolution of the idea kept
me occupied throughout my academic career.
Now, on return to industrial employment, I
have the opportunity to see how the idea has
progressed toward practical application and
maybe help to progress it a bit further.

Back in industry, 1999–present
The contrast between my academic research

and current software engineering practice in
industry could not be more striking. A program-
mer working on legacy code in industry rarely
has the privilege of starting again from scratch.
If a specification is provided, it is usually no more
than the instruction to do something useful and
attractive, making as little change as possible in
the existing code base or its behavior. The details
of the design are largely determined by what
turns out to be possible and adequately efficient
after exploring the existing code and testing sev-
eral possible changes by experiment. The only
way of increasing confidence in the correctness
of the changes is by debugging. The practice of
specifying an interface even as simple as a his-
togram graphics package is quite unattractive,
and formal proof is clearly inconceivable on
existing code bases, measured in millions of lines
of code. So how can the results of theoretical
research, inspired by purely academic ideals, be
brought to bear on the pervasive problems of
maintaining large-scale legacy code written in
legacy languages?

It’s the concept of an assertion that links my

earlier research with current industrial software
engineering practice and provides the basis for
hopes of future improvement. Assertions figure
strongly in Microsoft code. A recent count dis-
covered more than a quarter million of them in
the code for its Office product suite.

The primary role of an assertion today is as a
test oracle, defining the circumstances under
which a program under test is considered to fail.
A collection of aptly placed assertions is what
permits a massive suite of test cases to be run
overnight, without human intervention. Failure
of an assertion triggers a dump of the program
state, to be analyzed by the programmer on the
following morning. Apart from merely indicat-
ing the fact of failure, the place where the first
assertion fails is likely to give a good indication
of where and why the program is going wrong.
And this indication is given in advance of any
crash, avoiding the risk that the necessary diag-
nostic information is overwritten.

So assertions have already found their major
application, not to the proof of program cor-
rectness, but to the diagnosis of their errors.
Assertions are applied as a partial solution to the
problems of program crashes, which I first
encountered as a new programmer in 1960. The
other partial solution is the ubiquitous person-
al workstation, which reduces the turnaround
for program correction from days to minutes.

Assertions are usually compiled differently for
test runs than for code shipped to the customer.
In shipped code, the assertions are often omitted,
to avoid the runtime penalty and the confusion
that would follow if an error diagnostic or a
checkpoint dump were to appear as a customer
worked onscreen. Ideally, the only assertions to
be omitted are those that have been subjected to
proof. But more practically, many teams leave the
assertions in shipped code to generate an excep-
tion when false; to continue execution in such an
unexpected and untested circumstance would
run a grave risk of crash. So, instead, the excep-
tion handler makes a recovery that is reasonable
to the customer in the environment of use.

Assertions are also used to advantage by pro-
gram analysis tools like Prefix,23 being devel-
oped within Microsoft for legacy code
maintenance. The value of such tools is limit-
ed if they give so many warning messages that
the programmer can’t afford the time to exam-
ine them. Ideally, each warning should be
accompanied by an automatically generated
test case that would reveal the bug, but that
will depend on further advances in model
checking and theorem proving. Assertions and
assumptions provide a means for the program-
mer to explain that a certain error cannot occur

April–June 2003 23

or is irrelevant, and the tool will suppress the
corresponding sheaf of error reports. Report
suppression is another motivating factor for
programmers to include more and stronger
assertions in their code. Another acknowledged
motive is to inform programmers engaged in
subsequent program modification that certain
program properties must be preserved.

My work with Microsoft concentrates on
further design and development of tools to
assist in the programming of trustworthy sys-
tems and applications. In other engineering
disciplines, design automation tools embody
an increasing amount of scientific knowledge,
mathematical calculations, and engineering
know-how. My hope is that similar tools will
lead the way in delivering the results of
research into programming theory to the work-
ing software engineer, even to one who is work-
ing primarily on legacy code.

I suggest that assertional proof principles
should define the direction of evolution of
sophisticated program analysis tools. Without
principles, a program analysis tool has to depend
only on heuristics, and after a time, further
advance becomes increasingly difficult. There is
the danger that programmers can learn to write
code that has all the characteristics of good style
as defined by the heuristics, and yet be full of
bugs. The only principles that guard against this
risk are those directly based on considerations of
program correctness. And that is why program
correctness has been, and still remains, a suitable
topic for academic research.

References and notes
1. Elliott Brothers, Elliott 803 Programming Manual,

London Ltd., 1960.
2. D. Shell, “A High-Speed Sorting Procedure,”

Comm. ACM, vol. 2, no. 7, July 1959, pp. 30-32.
3. P. Naur, ed., “Report on the Algorithmic

Language Algol 60,” Comm. ACM, vol. 3, no. 5,
May 1960, pp. 299-314.

4. N. Chomsky, Syntactic Structures, Mouton & Co.,
1957.

5. J.W. Backus, “The Syntax and the Semantics of
the Proposed International Algebraic Language of
the Zurich ACM–GAMM [Assoc. for Computing
Machinery–German association for Applied
Mathematics and Mechanics] Conference,” Proc.
Int’l Congress for Information Processing, 1959, pp.
125-132.

6. C.A.R. Hoare, “Report on the Elliott Algol Transla-
tor,” Computer J., vol. 5, no. 4, Jan. 1963, pp.
345-348.

7. T.B. Steel Jr., ed., Formal Language Description
Languages for Computer Programming, North Hol-
land, 1966.

8. J.V. Garwick, “The Definition of Programming
Languages by their Compilers,” Formal Language
Description Languages for Computer Programming,
North Holland, 1966.

9. W.V.O. Quine, Mathematical Logic, revised ed.,
Harvard Univ. Press, 1955.

10. S. Igarashi, An Axiomatic Approach to Equivalence
Problems of Algorithms with Applications, doctoral
dissertation, Tokyo Univ., 1964.

11. P. Lucas et al., Informal Introduction to the
Abstract Syntax and Interpretation of PL/I, ULD ver-
sion II, IBM TR 25.03, IBM, 1968.

12. R.W. Floyd, “Assigning Meanings to Programs,”
Proc. Am. Soc. Symp. Applied Mathematics, vol. 19,
1967, pp. 19-31.

13. C.A.R. Hoare, “An Axiomatic Basis for Computer
Programming,” Comm. ACM, vol. 12, no. 10,
Oct. 1969, pp. 576-580, 583.

14. C.A.R. Hoare, “Procedures and Parameters: An
Axiomatic Approach,” Symp. Semantics of Algo-
rithmic Languages, LNM 188, E. Engeler, ed.,
Springer-Verlag, 1971, pp. 102-116.

15. C.A.R. Hoare and M. Foley, “Proof of a Recursive
Program: Quicksort,” Computer J., vol. 14, no. 4,
Nov. 1971, pp. 391-395.

16. C.A.R. Hoare, “Towards a Theory of Parallel Pro-
gramming,” Operating Systems Techniques, Acad-
emic Press, 1972, pp. 61-71.

17. C.A.R. Hoare and M. Clint, “Program Proving:
Jumps and Functions,” Acta Informatica, vol. 1,
1972, pp. 214-224.

18. C.A.R. Hoare, “A Note on the For Statement,”
BIT, vol. 12, no. 3, 1972, pp. 334-341.

19. C.A.R. Hoare and N. Wirth, “An Axiomatic Defini-
tion of the Programming Language PASCAL,”
Acta Informatica, vol. 2, no. 4, 1973, pp. 335-355.

20. R.L. London et al., “Proof Rules for the Program-
ming Language EUCLID,” Acta Informatica, vol.
10, 1978, pp. 1-26.

21. B. Meyer, Object-Oriented Software Construction,
2nd ed., Prentice Hall, 1997.

22. E.W. Dijkstra, “Go To Statement Considered
Harmful,” Comm. ACM, vol. 11, no. 3, Mar. 1968,
pp. 147-148.

23. S.C. Johnson, “Lint: A C Program Checker,” UNIX
4.2 Programming Manual, Univ. of California,
Berkeley, 1984.

24. W.R. Bush, J.D. Pincus, and D.J. Sielaff, “A Static
Analyser for Finding Dynamic Programming
Errors,” Software Practice and Experience, vol. 30,
no. 7, June 2000, pp. 775-802.

25. E.W. Dijkstra, “A Constructive Approach to the
Problem of Program Correctness,” BIT, vol. 8,
1968, pp. 174-186.

26. E.W. Dijkstra, A Discipline of Programming, Pren-
tice Hall, 1976.

27. C. Morgan, Programming from Specifications,
Prentice Hall, 1990.

24 IEEE Annals of the History of Computing

Assertions: A Personal Perspective

28. O-J. Dahl et al., SIMULA 67 Common Base
Language, Norwegian Computer Center, 1967.

29. O-J. Dahl and C.A.R. Hoare, “Hierarchical
Program Structures,” Structured Programming,
Academic Press, 1972, pp. 175-220.

30. C.A.R. Hoare, “A Structured Paging System,”
Computer J., vol. 16, no. 3, Aug. 1973, pp. 209-
215, 1973.

31. C.A.R. Hoare, “Proof of Correctness of Data Rep-
resentations,” Acta Informatica, vol. 1, no. 4,
1972, pp. 271-281.

32. E.W. Dijkstra, “Cooperating Sequential Process-
es,” Programming Languages, F. Genuys, ed., Aca-
demic Press, 1968.

33. P. Brinch Hansen, “Structured Multiprogram-
ming,” Comm. ACM, vol. 15, no. 7, July 1972, pp.
574-578.

34. C.A.R. Hoare, “Monitors, An Operating System
Structuring Concept,” Comm. ACM, vol. 17, no.
10, Oct. 1974, pp. 549-557.

35. P. Brinch Hansen, “The Programming Language
Concurrent Pascal,” IEEE Trans. Soft. Eng., vol. 1,
no. 2, June 1975, pp. 199-207.

36. J. Gosling, W. Joy, and G. Steel, The Java
Language Specification, Addison-Wesley, 1996.

37. C.A.R. Hoare, “The Structure of an Operating
System,” Language Hierarchies and Interfaces,
LNCS 46, F.L. Bauer and K. Samelson, eds.,
Springer, 1976, pp. 242-265.

38. J. Welsh and D. Bustard, Concurrent Program
Structures, Prentice Hall, 1988.

39. E.W. Dijkstra, “Guarded Commands, Non-
determinacy, and the Formal Derivation of Pro-
grams,” Comm. ACM, vol. 18, no. 8, Aug. 1975,
pp. 453-457.

40. C.A.R. Hoare, “Communicating Sequential
Processes,” Comm. ACM, vol. 21, no. 8, Aug.
1978, pp. 666-777.

41. J. Stoy, Denotational Semantics, the Scott-Strachey
Approach to Programming Language Theory, MIT
Press, 1977.

42. S. Brookes and A.W. Roscoe, “An Improved Fail-
ures Model for CSP,” Proc. Pittsburgh Seminar on
Concurrency, LNCS 197, S.D. Brookes, A.W.
Roscoe, and G. Winskel., eds., Springer, 1985.

43. C.A.R. Hoare, Communicating Sequential
Processes, Prentice Hall, 1985.

44. Inmos, Transputer Reference Manual, Prentice
Hall, 1988.

45. C.A.R. Hoare, “The Transputer and occam: A Per-
sonal Story,” Concurrency: Practice and Experience,
vol. 3, no. 4, 1991, pp. 249-264.

46. G. Jones and M. Goldsmith, Programming in
occam 2, Prentice Hall, 1988.

47. R. Milner, Communicating and Mobile Systems: The
pi-calculus, Cambridge University Press, 1999.

48. J.-R. Abrial, “Assigning Programs to Meanings,”
Mathematical Logic and Programming Languages,

Philosophical Trans. Royal Society, series A, vol.
312, 1984.

49. B.P. Collins, J.E. Nicholls, and I.H. Sorensen, Intro-
ducing Formal Methods, The CICS Experience with
Z, IBM TR 12.260, IBM, 1989.

50. C.B. Jones, Software Development, A Rigorous
Approach, Prentice Hall, 1980.

51. E.C.R. Hehner, “Predicative Programming,” Comm.
ACM, vol. 27, no. 2, Feb. 1984, pp. 134-151.

52. C.A.R. Hoare and E.C.R. Hehner, “A More Com-
plete Model of Communicating Processes, Theo-
retical Computer Science, vol. 26, no. 1-2, Sept.
1983, pp. 105-120.

53. C.A.R. Hoare and A.W. Roscoe, “Programs as Exe-
cutable Predicates,” Proc. Int’l Conf. Fifth Genera-
tion Computer Systems, Tokyo, Inst. for New
Generation Computer Technology, 1984, pp.
220-228.

54. C.A.R. Hoare, “Programs are Predicates,” Mathe-
matical Logic and Programming Languages, Philo-
sophical Trans. Royal Society, series A, vol. 312,
1984, pp. 475-489.

55. C.A.R. Hoare, “Programs are Predicates,” New
Gen. Comp., vol. 38, 1993, pp. 2-15.

56. C.A.R. Hoare and H. Jifeng, Unifying Theories of
Programming, Prentice Hall, 1998.

57. C.A.R. Hoare and P.E.Lauer, “Consistent and
Complementary Formal Theories of the Seman-
tics of Programming Languages, Acta Informatica,
vol. 3, no. 2, 1974, pp. 135-153.

C.A.R. (Tony) Hoare is a senior
researcher at Microsoft
Research, which he joined in
1999. His current research
interests are in program analy-
sis, programmer productivity
tools, and the challenge of an
automatic verifying compiler.

With a degree from Oxford University in Latin,
Greek, philosophy, and ancient history, Hoare was
first employed as a computer programmer in 1960.
He led a team implementing an early compiler for
Algol 60. He was appointed to the chair of computer
science at the Queen’s University, Belfast, in 1968,
and moved back to Oxford University in 1977 until
retirement in 1999.

Readers may contact C.A.R. (Tony) Hoare at
thoare@microsoft.com.

For further information on this or any other com-
puting topic, please visit our Digital Library at
http://computer.org/publications/dlib.

April–June 2003 25

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

