
loyal opposition

112	 I E E E S o f t w a r E P u b l i s h e d b y t h e I E E E C o m p u t e r S o c i e t y 	 0 74 0 - 74 5 9 / 0 8 / $ 2 5 . 0 0 © 2 0 0 8 I E E E

E d i t o r : R o b e r t L . G l a s s ■ C o m p u t i n g T r e n d s ■ r l g l a s s @ a c m . o r g

an ancient (but still
Valid?) Look at the
Classifi cation of testing

Robert L. Glass

… in which I challenge the belief that everything old in the software fi eld is obsolete (a challenge that seems
particularly relevant to Software’s 25th-anniversary issue).

T
o what extent can you trust a 17-year-old
software engineering book?

For most of us, the answer is easy—little
or not at all. After all, things change so fast
in the software fi eld, and new books come
into print so often, that there’s no need to

go back into the ancient history of the early 1990s.
That’s so “last millennium”!

That’s my answer, too, I think.
However, I’ve recently had occa-
sion to challenge that belief.

Lost and Forgotten
I was recently called on, in my
guise as an occasional reviewer
for academic publications, to re-
view a paper on test-case classifi -
cation. It was a good paper and of
particular interest to me because

I’ve written on that subject.
As many of us do (although we might be em-

barrassed to admit it), I glanced at the end of the
paper to see whether it referenced my own test-
classifi cation work. It didn’t. Now, that’s a not-
uncommon experience—most of us tend to over-
value our own work and think it should be cited
by anyone who even comes close to writing about
a topic dear to our hearts. But in this case, I was
severely disappointed because I was particularly
proud of my test-classifi cation work.

Now, here’s the rub. This work had appeared
in my 1992 book Building Quality Software, pub-
lished by Prentice Hall but out of print for nearly a
decade. Worse yet, it was buried in a lengthy dis-

cussion of testing approaches, fi nally emerging on
page 144 of a discussion that began on page 108,
three dozen pages earlier! So how could I possibly
expect modern-day researchers to have known
what was buried deep within (strike one) a 17-
year-old book (strike two)? In this analysis, I’m
close to striking out.

But, doggone it, I’m still proud of that work.
So, at the risk of appearing obsolete, I offer here a
snapshot of those oh-so-old thoughts on software
testing.

Why should you care about my software test-
ing work? Because (he immodestly said), it contains
insights I haven’t found in much more recent stud-
ies and books. And because testing is arguably the
most important software development phase—the
one that expends the most time and money, and the
one that infl uences product reliability the most.

so, Here Goes
Picture a 2D matrix. Down its vertical axis I include
the following four testing goals.

requirements-Driven testing
This testing examines the requirements for the arti-
fact being tested and explores whether the artifact
satisfi es them. This most often happens in practice
through a requirements/test-case matrix. Such test-
ing is often called “black box” testing because those
conducting it—either programmers or testers—need
not know how the software is built; they need only
to see the requirements or user documentation.

Continued on p. 111

Authorized licensed use limited to: University of London: Online Library. Downloaded on July 06,2022 at 12:53:21 UTC from IEEE Xplore. Restrictions apply.

	 November/December 2008 I E E E S o f t w a r E 	 111

LoyaL opposition

Copyright and reprint permission: Copyright © 2008 by the Institute of Electrical and Electronics Engineers,
Inc. All rights reserved. Abstracting is permitted with credit to the source. Libraries are permitted to pho-
tocopy beyond the limits of US copyright law for private use of patrons those post-1977 articles that carry
a code at the bottom of the first page, provided the per-copy fee indicated in the code is paid through the
Copyright Clearance Center, 222 Rosewood Dr., Danvers, MA 01923. For copying, reprint, or republication
permission, write to Copyright and Permissions Dept., IEEE Publications Admin., 445 Hoes Ln., Piscataway,
NJ 08855-1331.

IEEE Software (ISSN 0740-7459) is published bimonthly by the IEEE Computer Society. IEEE headquar-
ters: Three Park Ave., 17th Floor, New York, NY 10016-5997. IEEE Computer Society Publications Office:
10662 Los Vaqueros Cir., PO Box 3014, Los Alamitos, CA 90720-1314; +1 714 821 8380; fax +1 714 821
4010. IEEE Computer Society headquarters: 1730 Massachusetts Ave. NW, Washington, DC 20036-1903.
Subscription rates: IEEE Computer Society members get the lowest rate of US$49 per year, which includes
printed issues plus online access to all issues published since 1988. Go to www.computer.org/subscribe to or-
der and for more information on other subscription prices. Back issues: $20 for members, $136 for nonmem-
bers (plus shipping and handling). This magazine is available on microfiche.

Postmaster: Send undelivered copies and address changes to IEEE Software, Membership Processing Dept.,
IEEE Service Center, 445 Hoes Lane, Piscataway, NJ 08855-1331. Periodicals Postage Paid at New York,
NY, and at additional mailing offices. Canadian GST #125634188. Canada Post Publications Mail Agree-
ment Number 40013885. Return undeliverable Canadian addresses to PO Box 122, Niagara Falls, ON L2E
6S8, Canada. Printed in the USA.

Structure-Driven testing
This testing determines whether the as-
built artifact’s elements work correctly.
These elements can be modules, statements,
logic branches, or logic paths. Such testing
is often called “white box” testing because
those conducting it—usually, program-
mers—must know how the software is built
in order to perform it.

Statistics-Driven testing
This testing determines how well the soft-
ware product satisfies the customers’ or
users’ need for trustworthiness. Custom-
ers are often unsatisfied with knowing the
results of the two previous goal-driven ap-
proaches because those approaches fail
to address what the customer really cares
about—to what extent he or she can rely
on it. This kind of testing is a primary focus
of approaches such as “cleanroom” testing,
which chooses test-case inputs on the basis
of a random sampling of the typical usage
profiles for the product.

risk-Driven testing
This testing wards off the most serious
problems the software might encounter. It
identifies potential software risks—things
most likely to go wrong—and constructs
tests to determine whether the software
product is vulnerable to those risks. Such
testing is vital for software requiring high
reliability.

How Much testing
is Enough?
There’s more to this testing classification
than just a set of goal-driven approaches.
For example, these approaches should be
considered in a prioritized hierarchy, as
I said in that ancient book. All software
requires 100 percent requirements-driven
testing; it’s the first level of attack that test-
ing should include.

The next goal in the hierarchy would
be 100 percent structure-driven testing,
except that it’s impossible for the typical
software product. Researchers have shown
that structural testing at about the 85 per-
cent level is the best we can normally hope
for. We must manually inspect the remain-
ing obscure and elusive pieces of software
structure, those same researchers add.

Now, in the best of all possible worlds,

that would be enough testing. If the require-
ments are all met, and some impressively
high level of the structure is working cor-
rectly, what more could we hope for? A lot
more, experience tells us. For example, even
100 percent structure-driven testing isn’t
enough. If pieces of structure are missing
or if combinations of structure cause faults
when the individual pieces don’t, errors can
still slip through the requirements or struc-
ture screening. How often? When writing
that ancient book, I found that as many as
75 percent of software errors were due to
missing logic or combinations of structure.
(Are you getting a sense of déjà vu? I dis-
cussed these findings in my column on test-
ing and the test-coverage-analyzer tool in
the July/Aug. issue.)

The bottom line is that software that
must be thoroughly reliable needs much
more than requirements-driven and struc-
ture-driven testing. That’s where statistical
and risk-driven testing come in. They sup-
plement the belt and suspenders of the first
levels of testing. (However, other testing ap-
proaches have their advocates. For exam-
ple, some folk see statistical or risk-driven
testing as the first and primary approach,
not a supplemental approach as I’ve called
them here.)

the other axis
We’re far from through here. I’ve described
only one axis of my testing classification
matrix. The other, horizontal, axis involves
“phase-driven” approaches. It addresses
the issue of when, during testing, we ap-
ply the four goal-driven approaches I just
discussed.

Remember my warning that describing
my testing classification system in that an-
cient book took three dozen pages? What
we’ve seen here is enough for this column,
I think.

My next column will deal with the
phase-driven approaches. I’ll describe (he
said, trying to create suspense) how these
goal-driven approaches play across the
three phases of software testing: unit test-
ing, integration testing, and system testing.
Stay tuned!

P lease forgive what might appear to be
self-promotion in this column. I’m as
offended as the next person by people

who hype their own work. In this case, I of-
fer three excuses. First, this discussion fits
nicely into Software’s 25th anniversary is-
sue. Second, Building Quality Software is
out of print, and citing it won’t earn me a
dime. Finally, I really believe in the value of
that ancient, unnoticed work.

Robert L. Glass is editor emeritus of Elsevier’s Journal
of Systems and Software and publisher and editor of the
Software Practitioner newsletter, and is a visiting professor at
Griffith University, where he’s affiliated with the Australian
Research Center for Complex Systems. He likes to tell people
that his head is in the academic end of computing, but his
heart is in its practice. Contact him at rlglass@acm.org;
whether you agree with him or not, he’d be pleased to hear
from you.

Continued from p. 112

Authorized licensed use limited to: University of London: Online Library. Downloaded on July 06,2022 at 12:53:21 UTC from IEEE Xplore. Restrictions apply.

