
loyal opposition

104	 I E E E S o f t w a r E P u b l i s h e d b y t h e I E E E C o m p u t e r S o c i e t y 	 0 74 0 - 74 5 9 / 0 9 / $ 2 5 . 0 0 © 2 0 0 9 I E E E

E d i t o r : R o b e r t L . G l a s s n C o m p u t i n g T r e n d s n r l g l a s s @ a c m . o r g

M
y last column described a software-
testing classification system included in
a book I wrote (Building Quality Soft-
ware) over 17 years ago. I bragged so
much about that system that I overran
my column’s expected length and com-

mitted myself to a Part 2. So, here it is.
In that previous column, I explained why you

might care about testing classi-
fication (boring!) as described in
that ancient book (double boring!)
I argued that it offered insight on
a topic of major importance that
no one before or since has offered
(see why I called it bragging?).

I also described the vertical
axis of a 2D testing classification
matrix. The axis listed four goal-
driven approaches:

 1. Requirements-driven testing determines whether
the requirements for the software artifact under
test have been satisfied. It’s the most essential
level of testing.

 2. Structure-driven testing determines whether the
as-built software product’s pieces function as
they should. This level is also essential.

 3. Statistics-driven testing determines how well the
software product satisfies the user’s or custom-
er’s needs for trustworthiness. It’s for customers
who don’t rely on requirements- and structure-
driven findings, and it involves test cases drawn
from typical usage profiles.

 4. Risk-driven testing determines whether the soft-
ware product is vulnerable to its most important
risks. It’s vital in high-reliability settings.

Here, I describe how those goal-driven ap-
proaches play across the software life cycle.

Testing Phases
Software testing has three phases:

Unit testing involves the lowest-level compo-
nents of the evolving software product. Typi-
cally, the unit being tested is a module or collec-
tion of modules.
Integration testing involves the intermedi-
ate level of software production. Here, the
artifacts under test are integrated clusters of
units, often a partial or complete set of soft-
ware modules.
System testing involves the final level of soft-
ware production. Many software systems fit
into a larger system of some sort—for example,
an airframe with software parts or a payroll
system in an integrated business package.

Testing at each of these phases is very different.
In unit testing, the software product is far from
complete; you usually must build a framework so
that you can test the unit. In integration testing, the
glued-together software units provide the necessary
framework, and you can test the software as if it’s a
finished product. In system testing, you test the en-
tire system—usually something much larger than
the software system—to determine whether the
software plays satisfactorily with the system’s differ-
ent pieces.

So far, nothing about these phases is surpris-
ing. Any software-testing book written since the

n

n

n

Continued on p. 103

A Classification System
for Testing, Part 2

Robert L. Glass

… in which I present a simple but often-overlooked view of testing across the software life cycle.

Authorized licensed use limited to: University of London: Online Library. Downloaded on July 06,2022 at 12:54:27 UTC from IEEE Xplore. Restrictions apply.

	 January/February 2009 I E E E S o f t w a r E 	 103

LOYAL OPPOSITION

beginning of software time (the early 1950s)
could have contained this discussion. If
that’s all I had to say here, you could have
happily skipped this column.

Combining the Axes
Things become interesting when you
combine the two axes of the testing clas-
sifi cation matrix. How do you combine
the four goal-driven approaches with the
three phase-driven approaches?

Back when I wrote Building Quality
Software, I was surprised at how diffi cult
it was to merge those notions. After all,
most authors of software-testing books
thought that after they discussed goals
(however they identifi ed them) and phases
(which almost everyone agreed on), there
was nothing left to say. I didn’t realize that
another discussion step was missing until
I taught a class of my software colleagues
at Boeing, who began asking questions I
had never thought about.

For example, what does it mean to do
requirements-driven testing at the unit-
test level? Well, that one was fairly easy.
The unit will have some kind of docu-
mented requirements, perhaps an in-
formal discussion about what it should
do (the formal requirements docu-
ment or the user manual is unlikely to
say anything about the requirements
for any particular unit). Those infor-
mal requirements form the basis for unit
requirements-driven testing.

Also, what does it mean to do struc-
ture-driven testing at the integration-test
level? (Most discussions of structure-
driven testing assume we’re dealing with
a unit). Here, I concluded, we must treat
the constituent modules of the integrated
whole to be the structure under test. But
this gives a whole new meaning, and re-
quires a whole new approach, to struc-
ture-driven testing.

Out of all this thinking, a picture be-
gan to emerge of how to classify (and or-
ganize) software testing. That fi nal ma-
trix looked like Table 1.

It’s a nice summary, I immodestly say,
of a topic that’s surprisingly complex. I
hope you fi nd it as interesting as I did. Af-
ter all, that would be my only excuse for
dredging out an obscure discussion from
that ancient book.

T hat fi rst part of this column appeared
in Software’s focus-on-the-past 25th-
anniversary issue. It seems appropriate

to include this second part in Software’s
fi rst issue of its next 25 years. I believe this
matrix still has something useful to say
about testing in the future.

Robert L. Glass is editor emeritus of Elsevier’s Journal
of Systems and Software, the publisher/editor of the Software
Practitioner newsletter, and a visiting professor at Griffi th Uni-
versity. He likes to tell people that his head is in the academic
end of computing but his heart is in its practice. Contact him at
rlglass@acm.org; he’d be pleased to hear from you.

Reuse Rights and Reprint Permissions: Educational or personal use of this material is permitted without fee,
provided such use: 1) is not made for profi t; 2) includes this notice and a full citation to the original work on
the fi rst page of the copy; and 3) does not imply IEEE endorsement of any third-party products or services.
Authors and their companies are permitted to post their IEEE-copyrighted material on their own Web servers
without permission, provided that the IEEE copyright notice and a full citation to the original work appear on
the fi rst screen of the posted copy.

Permission to reprint/republish this material for commercial, advertising, or promotional purposes or for cre-
ating new collective works for resale or redistribution must be obtained from IEEE by writing to the IEEE
Intellectual Property Rights Offi ce, 445 Hoes Lane, Piscataway, NJ 08854-4141 or pubs-permissions@ieee.
org. Copyright © 2009 IEEE. All rights reserved.

Abstracting and Library Use: Abstracting is permitted with credit to the source. Libraries are permitted to
photocopy for private use of patrons, provided the per-copy fee indicated in the code at the bottom of the fi rst
page is paid through the Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923.

IEEE Software (ISSN 0740-7459) is published bimonthly by the IEEE Computer Society. IEEE headquarters:
Three Park Ave., 17th Floor, New York, NY 10016-5997. IEEE Computer Society Publications Offi ce: 10662
Los Vaqueros Cir., PO Box 3014, Los Alamitos, CA 90720-1314; +1 714 821 8380; fax +1 714 821 4010.
IEEE Computer Society headquarters: 2001 L St., Ste. 700, Washington, DC 20036. Subscription rates: IEEE
Computer Society members get the lowest rate of US$51 per year, which includes printed issues plus online
access to all issues published since 1988. Go to www.computer.org/subscribe to order and for more informa-
tion on other subscription prices. Back issues: $20 for members, $163 for nonmembers (plus shipping and
handling).

Postmaster: Send undelivered copies and address changes to IEEE Software, Membership Processing Dept.,
IEEE Service Center, 445 Hoes Lane, Piscataway, NJ 08855-1331. Periodicals Postage Paid at New York,
NY, and at additional mailing offi ces. Canadian GST #125634188. Canada Post Publications Mail Agree-
ment Number 40013885. Return undeliverable Canadian addresses to PO Box 122, Niagara Falls, ON L2E
6S8, Canada. Printed in the USA.

Table 1
A matrix for classifying

and organizing software testing*

testing approach

testing phase

Unit testing Integration testing System testing

Requirements-driven 100% unit
requirements

100% product
requirements

100% system
requirements

Structure-driven 85% logic paths 100% modules 100% components

Statistics-driven — — 90–100% of usage
profi les if required

Risk-driven As required As required 100% if required

* These fi gures represent the degree of each kind of testing that should occur in each phase. Where the fi gure isn’t 100 percent, it indicates the
 degree of testing that’s reasonably practical.

Continued from p. 104

Questions?
Comments?

IEEE Software
wants to hear from you!

 software@computer.org

Em
ai

l

Authorized licensed use limited to: University of London: Online Library. Downloaded on July 06,2022 at 12:54:27 UTC from IEEE Xplore. Restrictions apply.

