
Test-driven development: NoRestForTheWiccad:
a RESTFul web API for witches and wizards
Introduction
The aim of this lab is for you to carry out a few cycles of the test-driven devel-
opment workflow in the Javascript language. Along the way, you will learn a
few web development tricks as well.

We have developed a simple RESTFul web API for you to use in this lab. It is
a data storage and recall system with a magical theme.

Set up nodejs
You can work on this lab in the Coursera labs environment, or you can set up
a local development environment on your own machine.

If you decide to set up the system on your local machine, we recommend that
you use node.js v12 LTS.

Setting up to run locally on Windows and Mac

Please obtain and install node.js from the main site here: https://nodejs.org/en/

Setting up to run locally on GNU/Linux

If you are on Linux, we recommend that you use the binaries from node source.
follow the instructions here to do that: https://github.com/nodesource/distributions

Verify you can do the work

You are now going to test your node install. Windows users: we recommend
that you use Powershell to run these commands. Mac users: we recommend
that you use the Mac Terminal to run the commands. GNU/ Linux users: use
the terminal application you prefer.

In your terminal of choice, check the output of this command:

node --version

Hopefully you will see something like this:

v12.18.3

1

Working in the Coursera lab environment
The Coursera lab environment has already been configured for you with all the
essentials to complete this activity. The lab is integrated with Visual Studio
Code, an extremely popular code editor optimised for building and debugging
modern web and cloud applications. The environment also gives you access to:

Node v14.15.5
NPM v16.14.11

Start the lab environment application

It is simple to launch a lab exercise. You only need to click on the button
“Start” below the activity title to enter a lab environment. Let’s explore this
lab activity. Go ahead and click on the “Start” button!

Figure 1: Coursera “Start” button

The Lab environment application

The lab environment application may take some time to load and you will be
prompted with the following animation:

Figure 2: Coursera loading screen

2

Just wait a few seconds for your lab activity to start. It should not take longer
than thirty seconds. If you experience any issues please load the activity again.

Once the application loads, you will see an instance of Visual Studio Code IDE
as shown below:

Figure 3: Visual Studio Code editor

The “Welcome” page illustrates most of the features to get you started with the
environment. For now you can close the “Welcome” tab by clicking on the X
icon next to the tab name as we will explore the main sections together. The
“Welcome” page does not always appear so do not worry as it will not make any
difference in the way the IDE works.

The Visual Studio User Interface

The Visual Studio User Interface is very easy to learn and it comes with a great
selection of features. We will not explore in details all of the functionalities as
it is not in the purpose of this course. We will instead look at the main sections
required for you to get started with the labs.

VS Code comes with a simple and intuitive layout that maximises the space
provided for the editor while leaving ample room to browse and access the full
context of your folder or project.

The VS Code layout sections that you will require for this exercises are the Side
Bar, the Editor Groups and the Panels.

3

Figure 4: Visual Studio Code layout sections

• Side Bar (A) - Contains different views like the Explorer to assist you
while working on your project. Mostly used to navigate your folders.

• Editor Groups (B) - The main area to edit your files. You can open
as many editors as you like side by side vertically and horizontally.

• Panels (C) - You can display different panels below the editor region
for output or debug information, errors and warnings, or an integrated
terminal.This might not be visible when you open the IDE. The next
section shows you how to open it.

Do not worry if your IDE configuration looks slightly different from the above
picture. You can always drag the tabs around to adjust your layout configura-
tion.

4

Note about the integrated terminal

The integrated terminal panel is normally hidden by default in Visual Studio
Code and you need to manually enable it. Click the “View” tab on the top
navigation bar and then click the “Terminal” tab to enable the panel window
like shown below:

Figure 5: Visual Studio Code Terminal

Final touches

You are now set to work in the Coursera lab environment. Just few other
things before you begin this exercise:

• The starter code is already included inside the environment: there is a
folder called “norestforthewiccad” in the Side Bar section.

• You can create, edit, and delete files and folders in the Side Bar section.

• The Terminal exercise path is /home/coder/project/norestforthewiccad/,
type cd /home/coder/project/norestforthewiccad/ in the Terminal
if you get lost.

5

Get the API to run
Now that you have the basic environment set up, it is time to try and run the
web application you will be testing and improving.

Download the zip file for norestforthewiccad and unzip it.(only for local devel-
opment)

You should have a folder called norestforthewiccad. In your terminal, cd to the
folder where you unzipped norestforthewiccad. Run the following commands:

npm install
node index.js

Now point your web browser at http://localhost:3000, as instructed by the con-
sole output. You should see some JSON output from the server.

Accessing http://localhost:3000 from Coursera

In order to access the http://localhost:3000 from the Coursera development
environment simply do the following:

• Click on the “Browser Preview” plugin as shown on the image below:

Figure 6: Visual Studio Code Browser Preview

• Now point the “Browser Preview” plugin at http://localhost:3000

Once you point your web browser at https://localhost:3000 you should see
some JSON output from the server.

Add mocha to the project

Now we need to add some packages to the set up - the mocha unit testing
framework and the chai assertion framework. You can either open another
Terminal tab or you can exit the running web server by pressing Control+C on
your keyboard. This command adds the mocha, chai and chai-http modules to
the project:

6

npm add mocha chai chai-http

Now add this to packages.json’s scripts section to allow us to easily run the
tests:

“scripts”: { “test”: “node_modules/.bin/mocha” }

7

Now run the tests:

npm test

You will see some output a bit like this:

> norestforthewiccad@1.0.0 test ./norestforthewiccad
> mocha -w

Error: No test files found: "test"
npm ERR! Test failed. See above for more details.

You are now ready to create the tests!

Optional extra - hot code reloading

You can enable hot code reloading using nodemon. Hot code reloading means
your app will automatically restart every time you make an edit to the code. In
the top level folder, where the node_modules folder is, type this:

npm install nodemon
./node_modules/nodemon/bin/nodemon.js index.js

Now your app will reload every time you edit a file. If you want to get really
fancy, you can set this command up in your packages.json file in the scripts
section:

"scripts": {
....

"app": "./node_modules/nodemon/bin/nodemon.js index.js"
},

Now you can run the app as follows:

npm run app

If you edit any of the app files, it should automatically reload.

Backup your work in the Coursera development environment

It is always a good idea to backup your work and indeed a best practice in the
cycles of the test-driven development workflow. In order to backup your work
inside the Coursera development environment do the following:

• Run this command inside the terminal: /home/coder/coursera/backup.sh

• This will create a backup.zip file inside your root directory /home/coder/project

Note: This feature only works with the old lab experience. If you wish to
download a copy of your work you will have to first switch your lab to the
old experience. You can do so by clicking on the “switch back to the old lab
experience” link inside the “Help” menu button located on the top right corner
as shown on the image below:

8

Figure 7: Coursera Help Tab

Do not worry as the latest lab experience will be restored in future ac-
cesses. Once the lab reboots, simply drag and drop the generated “backup.zip”
file from the lab environment to your desktop to save a local copy of your work.

Once you have finished with the backup process, please remember to reboot the
lab in order to restore the latest lab experience.

9

Writing some unit tests
Now we should have our development environment ready and we have the web
application running. We are ready to write our first unit test.

Create a simple test

Make a folder in the norestforthewiccad folder called ‘test’.

In that folder, place a file called tests.js, with the following content:

var assert = require('assert');
describe('TestSetTestingMultipleModules', function () {

describe('TestSubSetTestingASingleModule', function () {
it('should compute basic maths such as 2 + 2 passer', function () {

assert.equal(2+2, 4);
});

});
});

Rerun the test command:

npm test

Now you should see some output which ends like this:

TestSetTestingMultipleModules
TestSubSetTestingASingleModule

should compute basic maths such as 2 + 2 passer

1 passing (3ms)

Excellent - you are ready to write some real tests!

Test the http://localhost:3000/ ‘/’ route with mocha, chai and chai-
http

Replace the code in test/tests.js with the following code:

var chai = require('chai');
var chaiHttp = require('chai-http');
var assert = require('assert');

chai.use(chaiHttp);

describe('Test top level / route', function() {
it('it should have a 200 status code', function (done) {

chai.request('http://localhost:3000') // the top level web address
.get('/') // the route to add to the top level address
.end((err, res) => { // what to do once the request returns

assert.equal(res.status, 200); // check we have the 200 OK HTTP code

10

done(); // finish up
});

});
});

Make sure you have your app running, then run the test with:

npm test

You should see output like this:

> norestforthewiccad@1.0.0 test /norestforthewiccad
> mocha

Test top level / route
it should have a 200 status code

1 passing (29ms)

Write a failing test

Remember that the first step of the test-driven lifecycle is to write a failing test?
Well it is time to do that. Put this into your tests.js file, below the other ‘it’
function call:

it('it should send the right message', (done) => {
chai.request('http://localhost:3000')

.get('/')

.end((err, res) => {
let data = JSON.parse(res.text);
assert.equal(data.message, 'Welcome to the norestforthewiccad API'

);
done();

});
});

If you are like me, you find it frustrating when tutorials keep giving you code
fragments. So here is the complete content for test/tests.js:

var chai = require('chai');
var chaiHttp = require('chai-http');
var assert = require('assert');

chai.use(chaiHttp);

describe('Test top level / route', function() {
it('it should have a 200 status code', function (done) {

11

chai.request('http://localhost:3000') // the top level web address
.get('/') // the route to add to the top level address
.end((err, res) => { // what to do once the request returns

assert.equal(res.status, 200); // check we have the 200 OK HTTP code
done(); // finish up

});
});
it('it should send the right message', (done) => {

chai.request('http://localhost:3000')
.get('/')
.end((err, res) => {

let data = JSON.parse(res.text);
assert.equal(data.message, 'Welcome to the norestforthewiccad API');

done();
});

});
});

Can you change the code in index.js so that it passes the test?

Work on the /spells route
Does the /spells route exist?

Ok now we have a passing test, time to write another failing test. Here is your
test:

it('it should have a spells route', (done) => {
chai.request('http://localhost:3000')

.get('/spells')

.end((err, res) => {
assert.equal(res.status, 200);
done();

});
});

Can you fix that one? You have 2 minutes. As a clue, look in index.js to see
how the spells are routed. A 404 code means the address does not exist.

Does /spells provide any data?

Now over to you - /spells should output some data a bit like this:

[
{

id: 1001,
name: "Rabbit foot positivity",
ingredients: [

12

{name:"Foot of rabbit"},
{name:"Juice of beetle"}],

result: "Good luck"
},
{

id:1002,
name: "Fox exeunta",
ingredients: [

{name:"Foul of lion"},
{name:"Spirit of hobo"}],

result: "Fox removed",
},

....
]

Can you think of a test that would test one aspect of that output?

Can you adapt the code so it passes your test?

The /spells/:id path

Next up, the spells/:id path. If you request http://localhost:3000/spells/1002,
you should receive a spell with that id.

Can you think of a simple test for that? Can you fix it?

Extended work
If you want to carry on with this work, can you fix the other routes? POST
/spells (add a new spell) and PUT /spells/:id (update a spell)?

13

	Test-driven development: NoRestForTheWiccad: a RESTFul web API for witches and wizards
	Introduction
	Set up nodejs
	Setting up to run locally on Windows and Mac
	Setting up to run locally on GNU/Linux
	Verify you can do the work

	Working in the Coursera lab environment
	Start the lab environment application
	The Lab environment application
	The Visual Studio User Interface
	Note about the integrated terminal
	Final touches

	Get the API to run
	Accessing http://localhost:3000 from Coursera
	Add mocha to the project
	Optional extra - hot code reloading
	Backup your work in the Coursera development environment

	Writing some unit tests
	Create a simple test
	Test the http://localhost:3000/ `/' route with mocha, chai and chai-http
	Write a failing test

	Work on the /spells route
	Does the /spells route exist?
	Does /spells provide any data?
	The /spells/:id path

	Extended work

